Some Short-Length Girth-8 QC-LDPC Codes From Primes of the Form t 2 + 1
We propose a simple algebraic construction for girth-8 regular QC-LDPC codes of short lengths, a few hundreds, based on the square matrix from some prime integers of the form [Formula Omitted] and a multiplication table method. We generalize the conventional multiplication table method in a way that...
Gespeichert in:
Veröffentlicht in: | IEEE communications letters 2022-06, Vol.26 (6), p.1211-1215 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a simple algebraic construction for girth-8 regular QC-LDPC codes of short lengths, a few hundreds, based on the square matrix from some prime integers of the form [Formula Omitted] and a multiplication table method. We generalize the conventional multiplication table method in a way that the size [Formula Omitted] of the circular permutation matrix (CPM) can be different from the modulus [Formula Omitted] in the calculation of the exponent matrix. We classify and suggest the parameters [Formula Omitted] with [Formula Omitted] so that the resulting codes have girth 8. In particular, we prove the existence of a threshold [Formula Omitted] so that the resulting code will always have girth 8 if [Formula Omitted] is used, given that [Formula Omitted]. Finally, we present various simulation results and theoretical analysis, one of which shows that the proposed codes of length around 250 have an additional coding gain of about 0.4 dB over the 5G NR LDPC codes. |
---|---|
ISSN: | 1089-7798 1558-2558 |
DOI: | 10.1109/LCOMM.2022.3159560 |