Global Reach-Level 3-Hourly River Flood Reanalysis (1980–2019)

Better understanding and quantification of river floods for very local and “flashy” events calls for modeling capability at fine spatial and temporal scales. However, long-term discharge records with a global coverage suitable for extreme events analysis are still lacking. Here, grounded on recent b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the American Meteorological Society 2021-11, Vol.102 (11), p.E2086-E2105
Hauptverfasser: Yang, Yuan, Pan, Ming, Lin, Peirong, Beck, Hylke E., Zeng, Zhenzhong, Yamazaki, Dai, David, Cédric H., Lu, Hui, Yang, Kun, Hong, Yang, Wood, Eric F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Better understanding and quantification of river floods for very local and “flashy” events calls for modeling capability at fine spatial and temporal scales. However, long-term discharge records with a global coverage suitable for extreme events analysis are still lacking. Here, grounded on recent breakthroughs in global runoff hydrology, river modeling, high-resolution hydrography, and climate reanalysis, we developed a 3-hourly river discharge record globally for 2.94 million river reaches during the 40-yr period of 1980–2019. The underlying modeling chain consists of the VIC land surface model (0.05°, 3-hourly) that is well calibrated and bias corrected and the RAPID routing model (2.94 million river and catchment vectors), with precipitation input from MSWEP and other meteorological fields downscaled from ERA5. Flood events (above 2-yr return) and their characteristics (number, spatial distribution, and seasonality) were extracted and studied. Validations against 3-hourly flow records from 6,000+ gauges in CONUS and daily records from 14,000+ gauges globally show good modeling performance across all flow ranges, good skills in reconstructing flood events (high extremes), and the benefit of (and need for) subdaily modeling. This data record, referred as Global Reach-Level Flood Reanalysis (GRFR), is publicly available at https://www.reachhydro.org/home/records/grfr.
ISSN:0003-0007
1520-0477
DOI:10.1175/bams-d-20-0057.1