Approximations of the connection Laplacian spectra

We consider a convolution-type operator on vector bundles over metric-measure spaces. This operator extends the analogous convolution Laplacian on functions in our earlier work to vector bundles, and is a natural extension of the graph connection Laplacian. We prove that for Euclidean or Hermitian c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2022-07, Vol.301 (3), p.3185-3206
Hauptverfasser: Burago, Dmitri, Ivanov, Sergei, Kurylev, Yaroslav, Lu, Jinpeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3206
container_issue 3
container_start_page 3185
container_title Mathematische Zeitschrift
container_volume 301
creator Burago, Dmitri
Ivanov, Sergei
Kurylev, Yaroslav
Lu, Jinpeng
description We consider a convolution-type operator on vector bundles over metric-measure spaces. This operator extends the analogous convolution Laplacian on functions in our earlier work to vector bundles, and is a natural extension of the graph connection Laplacian. We prove that for Euclidean or Hermitian connections on closed Riemannian manifolds, the spectrum of this operator and that of the graph connection Laplacian both approximate the spectrum of the connection Laplacian.
doi_str_mv 10.1007/s00209-022-03016-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2674398617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2674398617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-35fd249dca0a334fd06bf3bd3665a2eec1800a0c35eb9c0857aba18597ddf9493</originalsourceid><addsrcrecordid>eNp9UEtLxDAQDqJgXf0Dngqeo5NM0jTHZfEFBS96DmmaaJe1rUkX9N-btYI3TwPfa2Y-Qi4ZXDMAdZMAOGgKnFNAYBWVR6RgAjllNcdjUmReUlkrcUrOUtoCZFKJgvD1NMXxs3-3cz8OqRxDOb_50o3D4N0BKhs77azr7VCmKUPRnpOTYHfJX_zOFXm5u33ePNDm6f5xs26oQyZmijJ0XOjOWbCIInRQtQHbDqtKWu69YzWABYfSt9pBLZVtLaulVl0XtNC4IldLbj7wY-_TbLbjPg55peGVEqjriqms4ovKxTGl6IOZYv4mfhkG5tCNWboxuRvz042R2YSLKWXx8OrjX_Q_rm92Y2Zj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674398617</pqid></control><display><type>article</type><title>Approximations of the connection Laplacian spectra</title><source>SpringerNature Journals</source><creator>Burago, Dmitri ; Ivanov, Sergei ; Kurylev, Yaroslav ; Lu, Jinpeng</creator><creatorcontrib>Burago, Dmitri ; Ivanov, Sergei ; Kurylev, Yaroslav ; Lu, Jinpeng</creatorcontrib><description>We consider a convolution-type operator on vector bundles over metric-measure spaces. This operator extends the analogous convolution Laplacian on functions in our earlier work to vector bundles, and is a natural extension of the graph connection Laplacian. We prove that for Euclidean or Hermitian connections on closed Riemannian manifolds, the spectrum of this operator and that of the graph connection Laplacian both approximate the spectrum of the connection Laplacian.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-022-03016-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Convolution ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Riemann manifold</subject><ispartof>Mathematische Zeitschrift, 2022-07, Vol.301 (3), p.3185-3206</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-35fd249dca0a334fd06bf3bd3665a2eec1800a0c35eb9c0857aba18597ddf9493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00209-022-03016-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00209-022-03016-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Burago, Dmitri</creatorcontrib><creatorcontrib>Ivanov, Sergei</creatorcontrib><creatorcontrib>Kurylev, Yaroslav</creatorcontrib><creatorcontrib>Lu, Jinpeng</creatorcontrib><title>Approximations of the connection Laplacian spectra</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>We consider a convolution-type operator on vector bundles over metric-measure spaces. This operator extends the analogous convolution Laplacian on functions in our earlier work to vector bundles, and is a natural extension of the graph connection Laplacian. We prove that for Euclidean or Hermitian connections on closed Riemannian manifolds, the spectrum of this operator and that of the graph connection Laplacian both approximate the spectrum of the connection Laplacian.</description><subject>Convolution</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Riemann manifold</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UEtLxDAQDqJgXf0Dngqeo5NM0jTHZfEFBS96DmmaaJe1rUkX9N-btYI3TwPfa2Y-Qi4ZXDMAdZMAOGgKnFNAYBWVR6RgAjllNcdjUmReUlkrcUrOUtoCZFKJgvD1NMXxs3-3cz8OqRxDOb_50o3D4N0BKhs77azr7VCmKUPRnpOTYHfJX_zOFXm5u33ePNDm6f5xs26oQyZmijJ0XOjOWbCIInRQtQHbDqtKWu69YzWABYfSt9pBLZVtLaulVl0XtNC4IldLbj7wY-_TbLbjPg55peGVEqjriqms4ovKxTGl6IOZYv4mfhkG5tCNWboxuRvz042R2YSLKWXx8OrjX_Q_rm92Y2Zj</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Burago, Dmitri</creator><creator>Ivanov, Sergei</creator><creator>Kurylev, Yaroslav</creator><creator>Lu, Jinpeng</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220701</creationdate><title>Approximations of the connection Laplacian spectra</title><author>Burago, Dmitri ; Ivanov, Sergei ; Kurylev, Yaroslav ; Lu, Jinpeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-35fd249dca0a334fd06bf3bd3665a2eec1800a0c35eb9c0857aba18597ddf9493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Convolution</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Riemann manifold</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burago, Dmitri</creatorcontrib><creatorcontrib>Ivanov, Sergei</creatorcontrib><creatorcontrib>Kurylev, Yaroslav</creatorcontrib><creatorcontrib>Lu, Jinpeng</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burago, Dmitri</au><au>Ivanov, Sergei</au><au>Kurylev, Yaroslav</au><au>Lu, Jinpeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximations of the connection Laplacian spectra</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>301</volume><issue>3</issue><spage>3185</spage><epage>3206</epage><pages>3185-3206</pages><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>We consider a convolution-type operator on vector bundles over metric-measure spaces. This operator extends the analogous convolution Laplacian on functions in our earlier work to vector bundles, and is a natural extension of the graph connection Laplacian. We prove that for Euclidean or Hermitian connections on closed Riemannian manifolds, the spectrum of this operator and that of the graph connection Laplacian both approximate the spectrum of the connection Laplacian.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-022-03016-5</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5874
ispartof Mathematische Zeitschrift, 2022-07, Vol.301 (3), p.3185-3206
issn 0025-5874
1432-1823
language eng
recordid cdi_proquest_journals_2674398617
source SpringerNature Journals
subjects Convolution
Mathematics
Mathematics and Statistics
Operators (mathematics)
Riemann manifold
title Approximations of the connection Laplacian spectra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T04%3A28%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximations%20of%20the%20connection%20Laplacian%20spectra&rft.jtitle=Mathematische%20Zeitschrift&rft.au=Burago,%20Dmitri&rft.date=2022-07-01&rft.volume=301&rft.issue=3&rft.spage=3185&rft.epage=3206&rft.pages=3185-3206&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-022-03016-5&rft_dat=%3Cproquest_cross%3E2674398617%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674398617&rft_id=info:pmid/&rfr_iscdi=true