Approximations of the connection Laplacian spectra
We consider a convolution-type operator on vector bundles over metric-measure spaces. This operator extends the analogous convolution Laplacian on functions in our earlier work to vector bundles, and is a natural extension of the graph connection Laplacian. We prove that for Euclidean or Hermitian c...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2022-07, Vol.301 (3), p.3185-3206 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3206 |
---|---|
container_issue | 3 |
container_start_page | 3185 |
container_title | Mathematische Zeitschrift |
container_volume | 301 |
creator | Burago, Dmitri Ivanov, Sergei Kurylev, Yaroslav Lu, Jinpeng |
description | We consider a convolution-type operator on vector bundles over metric-measure spaces. This operator extends the analogous convolution Laplacian on functions in our earlier work to vector bundles, and is a natural extension of the graph connection Laplacian. We prove that for Euclidean or Hermitian connections on closed Riemannian manifolds, the spectrum of this operator and that of the graph connection Laplacian both approximate the spectrum of the connection Laplacian. |
doi_str_mv | 10.1007/s00209-022-03016-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2674398617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2674398617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-35fd249dca0a334fd06bf3bd3665a2eec1800a0c35eb9c0857aba18597ddf9493</originalsourceid><addsrcrecordid>eNp9UEtLxDAQDqJgXf0Dngqeo5NM0jTHZfEFBS96DmmaaJe1rUkX9N-btYI3TwPfa2Y-Qi4ZXDMAdZMAOGgKnFNAYBWVR6RgAjllNcdjUmReUlkrcUrOUtoCZFKJgvD1NMXxs3-3cz8OqRxDOb_50o3D4N0BKhs77azr7VCmKUPRnpOTYHfJX_zOFXm5u33ePNDm6f5xs26oQyZmijJ0XOjOWbCIInRQtQHbDqtKWu69YzWABYfSt9pBLZVtLaulVl0XtNC4IldLbj7wY-_TbLbjPg55peGVEqjriqms4ovKxTGl6IOZYv4mfhkG5tCNWboxuRvz042R2YSLKWXx8OrjX_Q_rm92Y2Zj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674398617</pqid></control><display><type>article</type><title>Approximations of the connection Laplacian spectra</title><source>SpringerNature Journals</source><creator>Burago, Dmitri ; Ivanov, Sergei ; Kurylev, Yaroslav ; Lu, Jinpeng</creator><creatorcontrib>Burago, Dmitri ; Ivanov, Sergei ; Kurylev, Yaroslav ; Lu, Jinpeng</creatorcontrib><description>We consider a convolution-type operator on vector bundles over metric-measure spaces. This operator extends the analogous convolution Laplacian on functions in our earlier work to vector bundles, and is a natural extension of the graph connection Laplacian. We prove that for Euclidean or Hermitian connections on closed Riemannian manifolds, the spectrum of this operator and that of the graph connection Laplacian both approximate the spectrum of the connection Laplacian.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-022-03016-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Convolution ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Riemann manifold</subject><ispartof>Mathematische Zeitschrift, 2022-07, Vol.301 (3), p.3185-3206</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-35fd249dca0a334fd06bf3bd3665a2eec1800a0c35eb9c0857aba18597ddf9493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00209-022-03016-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00209-022-03016-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Burago, Dmitri</creatorcontrib><creatorcontrib>Ivanov, Sergei</creatorcontrib><creatorcontrib>Kurylev, Yaroslav</creatorcontrib><creatorcontrib>Lu, Jinpeng</creatorcontrib><title>Approximations of the connection Laplacian spectra</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>We consider a convolution-type operator on vector bundles over metric-measure spaces. This operator extends the analogous convolution Laplacian on functions in our earlier work to vector bundles, and is a natural extension of the graph connection Laplacian. We prove that for Euclidean or Hermitian connections on closed Riemannian manifolds, the spectrum of this operator and that of the graph connection Laplacian both approximate the spectrum of the connection Laplacian.</description><subject>Convolution</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Riemann manifold</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UEtLxDAQDqJgXf0Dngqeo5NM0jTHZfEFBS96DmmaaJe1rUkX9N-btYI3TwPfa2Y-Qi4ZXDMAdZMAOGgKnFNAYBWVR6RgAjllNcdjUmReUlkrcUrOUtoCZFKJgvD1NMXxs3-3cz8OqRxDOb_50o3D4N0BKhs77azr7VCmKUPRnpOTYHfJX_zOFXm5u33ePNDm6f5xs26oQyZmijJ0XOjOWbCIInRQtQHbDqtKWu69YzWABYfSt9pBLZVtLaulVl0XtNC4IldLbj7wY-_TbLbjPg55peGVEqjriqms4ovKxTGl6IOZYv4mfhkG5tCNWboxuRvz042R2YSLKWXx8OrjX_Q_rm92Y2Zj</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Burago, Dmitri</creator><creator>Ivanov, Sergei</creator><creator>Kurylev, Yaroslav</creator><creator>Lu, Jinpeng</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220701</creationdate><title>Approximations of the connection Laplacian spectra</title><author>Burago, Dmitri ; Ivanov, Sergei ; Kurylev, Yaroslav ; Lu, Jinpeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-35fd249dca0a334fd06bf3bd3665a2eec1800a0c35eb9c0857aba18597ddf9493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Convolution</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Riemann manifold</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burago, Dmitri</creatorcontrib><creatorcontrib>Ivanov, Sergei</creatorcontrib><creatorcontrib>Kurylev, Yaroslav</creatorcontrib><creatorcontrib>Lu, Jinpeng</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burago, Dmitri</au><au>Ivanov, Sergei</au><au>Kurylev, Yaroslav</au><au>Lu, Jinpeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximations of the connection Laplacian spectra</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>301</volume><issue>3</issue><spage>3185</spage><epage>3206</epage><pages>3185-3206</pages><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>We consider a convolution-type operator on vector bundles over metric-measure spaces. This operator extends the analogous convolution Laplacian on functions in our earlier work to vector bundles, and is a natural extension of the graph connection Laplacian. We prove that for Euclidean or Hermitian connections on closed Riemannian manifolds, the spectrum of this operator and that of the graph connection Laplacian both approximate the spectrum of the connection Laplacian.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-022-03016-5</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5874 |
ispartof | Mathematische Zeitschrift, 2022-07, Vol.301 (3), p.3185-3206 |
issn | 0025-5874 1432-1823 |
language | eng |
recordid | cdi_proquest_journals_2674398617 |
source | SpringerNature Journals |
subjects | Convolution Mathematics Mathematics and Statistics Operators (mathematics) Riemann manifold |
title | Approximations of the connection Laplacian spectra |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T04%3A28%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximations%20of%20the%20connection%20Laplacian%20spectra&rft.jtitle=Mathematische%20Zeitschrift&rft.au=Burago,%20Dmitri&rft.date=2022-07-01&rft.volume=301&rft.issue=3&rft.spage=3185&rft.epage=3206&rft.pages=3185-3206&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-022-03016-5&rft_dat=%3Cproquest_cross%3E2674398617%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674398617&rft_id=info:pmid/&rfr_iscdi=true |