Approximations of the connection Laplacian spectra

We consider a convolution-type operator on vector bundles over metric-measure spaces. This operator extends the analogous convolution Laplacian on functions in our earlier work to vector bundles, and is a natural extension of the graph connection Laplacian. We prove that for Euclidean or Hermitian c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2022-07, Vol.301 (3), p.3185-3206
Hauptverfasser: Burago, Dmitri, Ivanov, Sergei, Kurylev, Yaroslav, Lu, Jinpeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a convolution-type operator on vector bundles over metric-measure spaces. This operator extends the analogous convolution Laplacian on functions in our earlier work to vector bundles, and is a natural extension of the graph connection Laplacian. We prove that for Euclidean or Hermitian connections on closed Riemannian manifolds, the spectrum of this operator and that of the graph connection Laplacian both approximate the spectrum of the connection Laplacian.
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-022-03016-5