Comparison of the Effectiveness of Selected Vibration Signal Analysis Methods in the Rotor Unbalance Detection of PMSM Drive System

Mechanical unbalance is a phenomenon that concerns rotating elements, including rotors in electrical machines. An unbalanced rotor generates vibration, which is transferred to the machine body. The vibration contributes to reducing drive system reliability and, as a consequence, leads to frequent do...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2022-05, Vol.11 (11), p.1748
Hauptverfasser: Ewert, Pawel, Kowalski, Czeslaw T., Jaworski, Michal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mechanical unbalance is a phenomenon that concerns rotating elements, including rotors in electrical machines. An unbalanced rotor generates vibration, which is transferred to the machine body. The vibration contributes to reducing drive system reliability and, as a consequence, leads to frequent downtime. Therefore, from an economic point of view, monitoring the unbalance of rotating elements is justified. In this paper, the rotor unbalance of a drive system with a permanent magnet synchronous motor (PMSM) was physically modelled using a specially developed shield, with five test masses fixed at the motor shaft. The analysed diagnostic signal was mechanical vibration. Unbalance was detected using selected signal analysis methods, such as frequency-domain methods (classical spectrum analysis FFT and a higher-order bispectrum method) and two methods applied in technical diagnostics (order analysis and orbit method). The efficiency of unbalance symptom detection using these four methods was compared for the frequency controlled PMSM. The properties of the analysed diagnostic methods were assessed and compared in terms of their usefulness in rotor unbalance diagnosis, and the basic features characterizing the usefulness of these methods were determined depending on the operating conditions of the drive. This work could have a significant impact on the process of designing diagnostic systems for PMSM drives.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics11111748