Research on the SDIF Failure Principle for RF Stealth Radar Signal Design
Radio frequency (RF) stealth is one of the essential research hotspots in the radar field. The anti-sorting signal is an important direction of the RF stealth signal. Theoretically speaking, the anti-sorting signal design is based on the failure principle of the radar signal sorting algorithm, and t...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2022-06, Vol.11 (11), p.1777 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Radio frequency (RF) stealth is one of the essential research hotspots in the radar field. The anti-sorting signal is an important direction of the RF stealth signal. Theoretically speaking, the anti-sorting signal design is based on the failure principle of the radar signal sorting algorithm, and the SDIF algorithm is a core sorting algorithm widely used in engineering. Thus, in this paper, the SDIF algorithm is first analyzed in detail. It is pointed out that the threshold function of the SDIF algorithm will fail when the signal pulse repetition interval (PRI) value obeys the interval distribution whose length is 20 times larger than the minimum interval of PRI. Secondly, the correctness of the failure principle of SDIF threshold separation is proved by the formula. Finally, the correctness is further verified by the signal design case. The principle of SDIF sorting threshold failure provides theoretical support for anti-sorting RF stealth signal design. It also complements the shortcoming of the casual design for the anti-sorting signal. Furthermore, the principle of SDIF sorting threshold failure helps improve anti-sorting signal design efficiency. Compared with the Dwell & Switch (D&S) signal and jitter signal, the anti-sorting ability of the signal designed by using the sorting failure principle is notably enhanced through simulation and experimentation. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics11111777 |