Derivatives of Eisenstein series of weight 2 and intersections of modular correspondences
We give a formula for certain values and derivatives of Siegel series and use them to compute Fourier coefficients of derivatives of the Siegel Eisenstein series of weight g 2 and genus g . When g = 4 , the Fourier coefficient is approximated by a certain Fourier coefficient of the central derivativ...
Gespeichert in:
Veröffentlicht in: | Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 2022-04, Vol.92 (1), p.27-52 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give a formula for certain values and derivatives of Siegel series and use them to compute Fourier coefficients of derivatives of the Siegel Eisenstein series of weight
g
2
and genus
g
. When
g
=
4
, the Fourier coefficient is approximated by a certain Fourier coefficient of the central derivative of the Siegel Eisenstein series of weight 2 and genus 3, which is related to the intersection of 3 arithmetic modular correspondences. Applications include a relation between weighted averages of representation numbers of symmetric matrices. |
---|---|
ISSN: | 0025-5858 1865-8784 |
DOI: | 10.1007/s12188-022-00256-4 |