Bridging the Charge Accumulation and High Reaction Order for High‐Rate Oxygen Evolution and Long Stable Zn‐Air Batteries

Combining noble metals with nonnoble metals is an attractive strategy to balance the activity and cost of electrocatalysts. However, a guiding principle for selecting suitable nonnoble metals is still lacking. Herein, a thorough mechanistic study on the platform oxygen evolution reaction (OER) elect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2022-06, Vol.32 (24), p.n/a
Hauptverfasser: Dai, Yawen, Yu, Jie, Wang, Jian, Shao, Zongping, Guan, Daqin, Huang, Yu‐Cheng, Ni, Meng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 24
container_start_page
container_title Advanced functional materials
container_volume 32
creator Dai, Yawen
Yu, Jie
Wang, Jian
Shao, Zongping
Guan, Daqin
Huang, Yu‐Cheng
Ni, Meng
description Combining noble metals with nonnoble metals is an attractive strategy to balance the activity and cost of electrocatalysts. However, a guiding principle for selecting suitable nonnoble metals is still lacking. Herein, a thorough mechanistic study on the platform oxygen evolution reaction (OER) electrocatalyst of Ir@Co3O4 to deeply understand the synergy between Ir and Co3O4 for the boosted OER has been carried out. It is demonstrated that the pseudocapacitive feature of Co3O4 plays a key role in accumulating sufficient positive charge [Q], while the Ir sites are responsible for achieving a high reaction order (β), synergistically contributing to the high OER activity of Ir@Co3O4 through the rate law equation. Specifically, Ir@Co3O4 displays a low overpotential of 280 mV at 10 mA cm−2 with a small Ir loading of 1.4 wt%. Ir@Co3O4 is further applied to Zn‐air batteries, which enables a low charging potential and thus alleviates the oxidative corrosion of the air electrode, leading to improved cycle stability of 210 h at 20 mA cm−2. This work demonstrates that anchoring active noble metal sites (for high β) on pseudocapacitive supports (for high [Q]) is highly favorable to the OER process, providing a clear guidance for boosting the utilization of noble metals in electrocatalysis. Ultra‐low loading Ir (1.4 wt%) is anchored on Co3O4 for oxygen evolution reaction (OER). The pseudocapacitive Co3O4 helps accumulate the positive charge [Q], while the Ir sites help achieve a high reaction order (β). Anchoring the ultra‐low loading noble catalyst on the pseudocapacitive non‐noble catalyst is a promising strategy for high‐performance low‐cost catalyst development.
doi_str_mv 10.1002/adfm.202111989
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2673980389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2673980389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3579-663bdab34aa84aea6b54b49921f0d6deb6ba62ed2612cf37cc999a623a730b253</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFavnhc8p-5Huske02qtUClUBfESJptJmpImdZOoBQ_-BH-jv8S0lXr0NMPL88zAS8g5Zz3OmLiEOFn2BBOcc-3rA9LhiitHMuEf7nf-dExOqmrBGPc86XbIx8BmcZoVKa3nSIdzsCnSwJhm2eRQZ2VBoYjpOEvndIZgtsnUxmhpUtpt_v35NYMa6fR9nWJBr1_LvNmLk7K9fF9DlCN9Llo0yCwdQF2jzbA6JUcJ5BWe_c4ueRxdPwzHzmR6czsMJo6RfU87Sskohki6AL4LCCrqu5GrteAJi1WMkYpACYyF4sIk0jNGa90mEjzJItGXXXKxu7uy5UuDVR0uysYW7ctQKE9qn0lft1RvRxlbVpXFJFzZbAl2HXIWbhoONw2H-4ZbQe-EtyzH9T90GFyN7v7cHxdagk8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673980389</pqid></control><display><type>article</type><title>Bridging the Charge Accumulation and High Reaction Order for High‐Rate Oxygen Evolution and Long Stable Zn‐Air Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dai, Yawen ; Yu, Jie ; Wang, Jian ; Shao, Zongping ; Guan, Daqin ; Huang, Yu‐Cheng ; Ni, Meng</creator><creatorcontrib>Dai, Yawen ; Yu, Jie ; Wang, Jian ; Shao, Zongping ; Guan, Daqin ; Huang, Yu‐Cheng ; Ni, Meng</creatorcontrib><description>Combining noble metals with nonnoble metals is an attractive strategy to balance the activity and cost of electrocatalysts. However, a guiding principle for selecting suitable nonnoble metals is still lacking. Herein, a thorough mechanistic study on the platform oxygen evolution reaction (OER) electrocatalyst of Ir@Co3O4 to deeply understand the synergy between Ir and Co3O4 for the boosted OER has been carried out. It is demonstrated that the pseudocapacitive feature of Co3O4 plays a key role in accumulating sufficient positive charge [Q], while the Ir sites are responsible for achieving a high reaction order (β), synergistically contributing to the high OER activity of Ir@Co3O4 through the rate law equation. Specifically, Ir@Co3O4 displays a low overpotential of 280 mV at 10 mA cm−2 with a small Ir loading of 1.4 wt%. Ir@Co3O4 is further applied to Zn‐air batteries, which enables a low charging potential and thus alleviates the oxidative corrosion of the air electrode, leading to improved cycle stability of 210 h at 20 mA cm−2. This work demonstrates that anchoring active noble metal sites (for high β) on pseudocapacitive supports (for high [Q]) is highly favorable to the OER process, providing a clear guidance for boosting the utilization of noble metals in electrocatalysis. Ultra‐low loading Ir (1.4 wt%) is anchored on Co3O4 for oxygen evolution reaction (OER). The pseudocapacitive Co3O4 helps accumulate the positive charge [Q], while the Ir sites help achieve a high reaction order (β). Anchoring the ultra‐low loading noble catalyst on the pseudocapacitive non‐noble catalyst is a promising strategy for high‐performance low‐cost catalyst development.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202111989</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Accumulation ; charge accumulation ; Cobalt oxides ; Electrocatalysts ; Materials science ; Metal air batteries ; Metals ; Noble metals ; oxygen evolution ; Oxygen evolution reactions ; pseudocapacitive ; rate law analysis ; reaction order ; Zinc-oxygen batteries</subject><ispartof>Advanced functional materials, 2022-06, Vol.32 (24), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3579-663bdab34aa84aea6b54b49921f0d6deb6ba62ed2612cf37cc999a623a730b253</citedby><cites>FETCH-LOGICAL-c3579-663bdab34aa84aea6b54b49921f0d6deb6ba62ed2612cf37cc999a623a730b253</cites><orcidid>0000-0001-5310-4039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202111989$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202111989$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Dai, Yawen</creatorcontrib><creatorcontrib>Yu, Jie</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Shao, Zongping</creatorcontrib><creatorcontrib>Guan, Daqin</creatorcontrib><creatorcontrib>Huang, Yu‐Cheng</creatorcontrib><creatorcontrib>Ni, Meng</creatorcontrib><title>Bridging the Charge Accumulation and High Reaction Order for High‐Rate Oxygen Evolution and Long Stable Zn‐Air Batteries</title><title>Advanced functional materials</title><description>Combining noble metals with nonnoble metals is an attractive strategy to balance the activity and cost of electrocatalysts. However, a guiding principle for selecting suitable nonnoble metals is still lacking. Herein, a thorough mechanistic study on the platform oxygen evolution reaction (OER) electrocatalyst of Ir@Co3O4 to deeply understand the synergy between Ir and Co3O4 for the boosted OER has been carried out. It is demonstrated that the pseudocapacitive feature of Co3O4 plays a key role in accumulating sufficient positive charge [Q], while the Ir sites are responsible for achieving a high reaction order (β), synergistically contributing to the high OER activity of Ir@Co3O4 through the rate law equation. Specifically, Ir@Co3O4 displays a low overpotential of 280 mV at 10 mA cm−2 with a small Ir loading of 1.4 wt%. Ir@Co3O4 is further applied to Zn‐air batteries, which enables a low charging potential and thus alleviates the oxidative corrosion of the air electrode, leading to improved cycle stability of 210 h at 20 mA cm−2. This work demonstrates that anchoring active noble metal sites (for high β) on pseudocapacitive supports (for high [Q]) is highly favorable to the OER process, providing a clear guidance for boosting the utilization of noble metals in electrocatalysis. Ultra‐low loading Ir (1.4 wt%) is anchored on Co3O4 for oxygen evolution reaction (OER). The pseudocapacitive Co3O4 helps accumulate the positive charge [Q], while the Ir sites help achieve a high reaction order (β). Anchoring the ultra‐low loading noble catalyst on the pseudocapacitive non‐noble catalyst is a promising strategy for high‐performance low‐cost catalyst development.</description><subject>Accumulation</subject><subject>charge accumulation</subject><subject>Cobalt oxides</subject><subject>Electrocatalysts</subject><subject>Materials science</subject><subject>Metal air batteries</subject><subject>Metals</subject><subject>Noble metals</subject><subject>oxygen evolution</subject><subject>Oxygen evolution reactions</subject><subject>pseudocapacitive</subject><subject>rate law analysis</subject><subject>reaction order</subject><subject>Zinc-oxygen batteries</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRsFavnhc8p-5Huske02qtUClUBfESJptJmpImdZOoBQ_-BH-jv8S0lXr0NMPL88zAS8g5Zz3OmLiEOFn2BBOcc-3rA9LhiitHMuEf7nf-dExOqmrBGPc86XbIx8BmcZoVKa3nSIdzsCnSwJhm2eRQZ2VBoYjpOEvndIZgtsnUxmhpUtpt_v35NYMa6fR9nWJBr1_LvNmLk7K9fF9DlCN9Llo0yCwdQF2jzbA6JUcJ5BWe_c4ueRxdPwzHzmR6czsMJo6RfU87Sskohki6AL4LCCrqu5GrteAJi1WMkYpACYyF4sIk0jNGa90mEjzJItGXXXKxu7uy5UuDVR0uysYW7ctQKE9qn0lft1RvRxlbVpXFJFzZbAl2HXIWbhoONw2H-4ZbQe-EtyzH9T90GFyN7v7cHxdagk8</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Dai, Yawen</creator><creator>Yu, Jie</creator><creator>Wang, Jian</creator><creator>Shao, Zongping</creator><creator>Guan, Daqin</creator><creator>Huang, Yu‐Cheng</creator><creator>Ni, Meng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5310-4039</orcidid></search><sort><creationdate>20220601</creationdate><title>Bridging the Charge Accumulation and High Reaction Order for High‐Rate Oxygen Evolution and Long Stable Zn‐Air Batteries</title><author>Dai, Yawen ; Yu, Jie ; Wang, Jian ; Shao, Zongping ; Guan, Daqin ; Huang, Yu‐Cheng ; Ni, Meng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3579-663bdab34aa84aea6b54b49921f0d6deb6ba62ed2612cf37cc999a623a730b253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accumulation</topic><topic>charge accumulation</topic><topic>Cobalt oxides</topic><topic>Electrocatalysts</topic><topic>Materials science</topic><topic>Metal air batteries</topic><topic>Metals</topic><topic>Noble metals</topic><topic>oxygen evolution</topic><topic>Oxygen evolution reactions</topic><topic>pseudocapacitive</topic><topic>rate law analysis</topic><topic>reaction order</topic><topic>Zinc-oxygen batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Yawen</creatorcontrib><creatorcontrib>Yu, Jie</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Shao, Zongping</creatorcontrib><creatorcontrib>Guan, Daqin</creatorcontrib><creatorcontrib>Huang, Yu‐Cheng</creatorcontrib><creatorcontrib>Ni, Meng</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Yawen</au><au>Yu, Jie</au><au>Wang, Jian</au><au>Shao, Zongping</au><au>Guan, Daqin</au><au>Huang, Yu‐Cheng</au><au>Ni, Meng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bridging the Charge Accumulation and High Reaction Order for High‐Rate Oxygen Evolution and Long Stable Zn‐Air Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>32</volume><issue>24</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Combining noble metals with nonnoble metals is an attractive strategy to balance the activity and cost of electrocatalysts. However, a guiding principle for selecting suitable nonnoble metals is still lacking. Herein, a thorough mechanistic study on the platform oxygen evolution reaction (OER) electrocatalyst of Ir@Co3O4 to deeply understand the synergy between Ir and Co3O4 for the boosted OER has been carried out. It is demonstrated that the pseudocapacitive feature of Co3O4 plays a key role in accumulating sufficient positive charge [Q], while the Ir sites are responsible for achieving a high reaction order (β), synergistically contributing to the high OER activity of Ir@Co3O4 through the rate law equation. Specifically, Ir@Co3O4 displays a low overpotential of 280 mV at 10 mA cm−2 with a small Ir loading of 1.4 wt%. Ir@Co3O4 is further applied to Zn‐air batteries, which enables a low charging potential and thus alleviates the oxidative corrosion of the air electrode, leading to improved cycle stability of 210 h at 20 mA cm−2. This work demonstrates that anchoring active noble metal sites (for high β) on pseudocapacitive supports (for high [Q]) is highly favorable to the OER process, providing a clear guidance for boosting the utilization of noble metals in electrocatalysis. Ultra‐low loading Ir (1.4 wt%) is anchored on Co3O4 for oxygen evolution reaction (OER). The pseudocapacitive Co3O4 helps accumulate the positive charge [Q], while the Ir sites help achieve a high reaction order (β). Anchoring the ultra‐low loading noble catalyst on the pseudocapacitive non‐noble catalyst is a promising strategy for high‐performance low‐cost catalyst development.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202111989</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5310-4039</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2022-06, Vol.32 (24), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2673980389
source Wiley Online Library Journals Frontfile Complete
subjects Accumulation
charge accumulation
Cobalt oxides
Electrocatalysts
Materials science
Metal air batteries
Metals
Noble metals
oxygen evolution
Oxygen evolution reactions
pseudocapacitive
rate law analysis
reaction order
Zinc-oxygen batteries
title Bridging the Charge Accumulation and High Reaction Order for High‐Rate Oxygen Evolution and Long Stable Zn‐Air Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A52%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bridging%20the%20Charge%20Accumulation%20and%20High%20Reaction%20Order%20for%20High%E2%80%90Rate%20Oxygen%20Evolution%20and%20Long%20Stable%20Zn%E2%80%90Air%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Dai,%20Yawen&rft.date=2022-06-01&rft.volume=32&rft.issue=24&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202111989&rft_dat=%3Cproquest_cross%3E2673980389%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2673980389&rft_id=info:pmid/&rfr_iscdi=true