Nonzero-Sum Risk-Sensitive Continuous-Time Stochastic Games with Ergodic Costs

We study nonzero-sum stochastic games for continuous time Markov decision processes on a denumerable state space with risk-sensitive ergodic cost criterion. Transition rates and cost rates are allowed to be unbounded. Under a Lyapunov type stability assumption, we show that the corresponding system...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics & optimization 2022-08, Vol.86 (1), Article 6
Hauptverfasser: Ghosh, Mrinal K., Golui, Subrata, Pal, Chandan, Pradhan, Somnath
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study nonzero-sum stochastic games for continuous time Markov decision processes on a denumerable state space with risk-sensitive ergodic cost criterion. Transition rates and cost rates are allowed to be unbounded. Under a Lyapunov type stability assumption, we show that the corresponding system of coupled HJB equations admits a solution which leads to the existence of a Nash equilibrium in stationary strategies. We establish this using an approach involving principal eigenvalues associated with the HJB equations. Furthermore, exploiting appropriate stochastic representation of principal eigenfunctions, we completely characterize Nash equilibria in the space of stationary Markov strategies.
ISSN:0095-4616
1432-0606
DOI:10.1007/s00245-022-09878-9