Automated visual inspection of silicon detectors in CMS experiment

In the CMS experiment at CERN, Geneva, a large number of HGCAL sensor modules are fabricated in advanced laboratories around the world. Each sensor module contains about 700 checkpoints for visual inspection thus making it almost impossible to carry out such inspection manually. As artificial intell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-06
Hauptverfasser: Giri, Nupur, Dugad, Shashi, Chhabria, Amit, Manwani, Rashmi, Asrani, Priyanka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Giri, Nupur
Dugad, Shashi
Chhabria, Amit
Manwani, Rashmi
Asrani, Priyanka
description In the CMS experiment at CERN, Geneva, a large number of HGCAL sensor modules are fabricated in advanced laboratories around the world. Each sensor module contains about 700 checkpoints for visual inspection thus making it almost impossible to carry out such inspection manually. As artificial intelligence is more and more widely used in manufacturing, traditional detection technologies are gradually being intelligent. In order to more accurately evaluate the checkpoints, we propose to use deep learning-based object detection techniques to detect manufacturing defects in testing large numbers of modules automatically.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2673710180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2673710180</sourcerecordid><originalsourceid>FETCH-proquest_journals_26737101803</originalsourceid><addsrcrecordid>eNqNjcsKwjAURIMgWLT_EHBdyMPabrUoblzpvoT2FlLSJOYm4uebhR_gag5zBmZFCiElr9qDEBtSIs6MMXFsRF3LgpxPKbpFRRjpW2NShmqLHoaonaVuoqiNHjKOEHPpAmZPu_uDwsdD0AvYuCPrSRmE8pdbsr9ent2t8sG9EmDsZ5eCzarPt7LhjLdM_rf6AuiEOg8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673710180</pqid></control><display><type>article</type><title>Automated visual inspection of silicon detectors in CMS experiment</title><source>Free E- Journals</source><creator>Giri, Nupur ; Dugad, Shashi ; Chhabria, Amit ; Manwani, Rashmi ; Asrani, Priyanka</creator><creatorcontrib>Giri, Nupur ; Dugad, Shashi ; Chhabria, Amit ; Manwani, Rashmi ; Asrani, Priyanka</creatorcontrib><description>In the CMS experiment at CERN, Geneva, a large number of HGCAL sensor modules are fabricated in advanced laboratories around the world. Each sensor module contains about 700 checkpoints for visual inspection thus making it almost impossible to carry out such inspection manually. As artificial intelligence is more and more widely used in manufacturing, traditional detection technologies are gradually being intelligent. In order to more accurately evaluate the checkpoints, we propose to use deep learning-based object detection techniques to detect manufacturing defects in testing large numbers of modules automatically.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial intelligence ; Inspection ; Manufacturing defects ; Modules ; Object recognition</subject><ispartof>arXiv.org, 2022-06</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Giri, Nupur</creatorcontrib><creatorcontrib>Dugad, Shashi</creatorcontrib><creatorcontrib>Chhabria, Amit</creatorcontrib><creatorcontrib>Manwani, Rashmi</creatorcontrib><creatorcontrib>Asrani, Priyanka</creatorcontrib><title>Automated visual inspection of silicon detectors in CMS experiment</title><title>arXiv.org</title><description>In the CMS experiment at CERN, Geneva, a large number of HGCAL sensor modules are fabricated in advanced laboratories around the world. Each sensor module contains about 700 checkpoints for visual inspection thus making it almost impossible to carry out such inspection manually. As artificial intelligence is more and more widely used in manufacturing, traditional detection technologies are gradually being intelligent. In order to more accurately evaluate the checkpoints, we propose to use deep learning-based object detection techniques to detect manufacturing defects in testing large numbers of modules automatically.</description><subject>Artificial intelligence</subject><subject>Inspection</subject><subject>Manufacturing defects</subject><subject>Modules</subject><subject>Object recognition</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjcsKwjAURIMgWLT_EHBdyMPabrUoblzpvoT2FlLSJOYm4uebhR_gag5zBmZFCiElr9qDEBtSIs6MMXFsRF3LgpxPKbpFRRjpW2NShmqLHoaonaVuoqiNHjKOEHPpAmZPu_uDwsdD0AvYuCPrSRmE8pdbsr9ent2t8sG9EmDsZ5eCzarPt7LhjLdM_rf6AuiEOg8</recordid><startdate>20220603</startdate><enddate>20220603</enddate><creator>Giri, Nupur</creator><creator>Dugad, Shashi</creator><creator>Chhabria, Amit</creator><creator>Manwani, Rashmi</creator><creator>Asrani, Priyanka</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220603</creationdate><title>Automated visual inspection of silicon detectors in CMS experiment</title><author>Giri, Nupur ; Dugad, Shashi ; Chhabria, Amit ; Manwani, Rashmi ; Asrani, Priyanka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26737101803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Inspection</topic><topic>Manufacturing defects</topic><topic>Modules</topic><topic>Object recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Giri, Nupur</creatorcontrib><creatorcontrib>Dugad, Shashi</creatorcontrib><creatorcontrib>Chhabria, Amit</creatorcontrib><creatorcontrib>Manwani, Rashmi</creatorcontrib><creatorcontrib>Asrani, Priyanka</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giri, Nupur</au><au>Dugad, Shashi</au><au>Chhabria, Amit</au><au>Manwani, Rashmi</au><au>Asrani, Priyanka</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Automated visual inspection of silicon detectors in CMS experiment</atitle><jtitle>arXiv.org</jtitle><date>2022-06-03</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>In the CMS experiment at CERN, Geneva, a large number of HGCAL sensor modules are fabricated in advanced laboratories around the world. Each sensor module contains about 700 checkpoints for visual inspection thus making it almost impossible to carry out such inspection manually. As artificial intelligence is more and more widely used in manufacturing, traditional detection technologies are gradually being intelligent. In order to more accurately evaluate the checkpoints, we propose to use deep learning-based object detection techniques to detect manufacturing defects in testing large numbers of modules automatically.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2673710180
source Free E- Journals
subjects Artificial intelligence
Inspection
Manufacturing defects
Modules
Object recognition
title Automated visual inspection of silicon detectors in CMS experiment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T09%3A32%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Automated%20visual%20inspection%20of%20silicon%20detectors%20in%20CMS%20experiment&rft.jtitle=arXiv.org&rft.au=Giri,%20Nupur&rft.date=2022-06-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2673710180%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2673710180&rft_id=info:pmid/&rfr_iscdi=true