Automated visual inspection of silicon detectors in CMS experiment
In the CMS experiment at CERN, Geneva, a large number of HGCAL sensor modules are fabricated in advanced laboratories around the world. Each sensor module contains about 700 checkpoints for visual inspection thus making it almost impossible to carry out such inspection manually. As artificial intell...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-06 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Giri, Nupur Dugad, Shashi Chhabria, Amit Manwani, Rashmi Asrani, Priyanka |
description | In the CMS experiment at CERN, Geneva, a large number of HGCAL sensor modules are fabricated in advanced laboratories around the world. Each sensor module contains about 700 checkpoints for visual inspection thus making it almost impossible to carry out such inspection manually. As artificial intelligence is more and more widely used in manufacturing, traditional detection technologies are gradually being intelligent. In order to more accurately evaluate the checkpoints, we propose to use deep learning-based object detection techniques to detect manufacturing defects in testing large numbers of modules automatically. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2673710180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2673710180</sourcerecordid><originalsourceid>FETCH-proquest_journals_26737101803</originalsourceid><addsrcrecordid>eNqNjcsKwjAURIMgWLT_EHBdyMPabrUoblzpvoT2FlLSJOYm4uebhR_gag5zBmZFCiElr9qDEBtSIs6MMXFsRF3LgpxPKbpFRRjpW2NShmqLHoaonaVuoqiNHjKOEHPpAmZPu_uDwsdD0AvYuCPrSRmE8pdbsr9ent2t8sG9EmDsZ5eCzarPt7LhjLdM_rf6AuiEOg8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673710180</pqid></control><display><type>article</type><title>Automated visual inspection of silicon detectors in CMS experiment</title><source>Free E- Journals</source><creator>Giri, Nupur ; Dugad, Shashi ; Chhabria, Amit ; Manwani, Rashmi ; Asrani, Priyanka</creator><creatorcontrib>Giri, Nupur ; Dugad, Shashi ; Chhabria, Amit ; Manwani, Rashmi ; Asrani, Priyanka</creatorcontrib><description>In the CMS experiment at CERN, Geneva, a large number of HGCAL sensor modules are fabricated in advanced laboratories around the world. Each sensor module contains about 700 checkpoints for visual inspection thus making it almost impossible to carry out such inspection manually. As artificial intelligence is more and more widely used in manufacturing, traditional detection technologies are gradually being intelligent. In order to more accurately evaluate the checkpoints, we propose to use deep learning-based object detection techniques to detect manufacturing defects in testing large numbers of modules automatically.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial intelligence ; Inspection ; Manufacturing defects ; Modules ; Object recognition</subject><ispartof>arXiv.org, 2022-06</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Giri, Nupur</creatorcontrib><creatorcontrib>Dugad, Shashi</creatorcontrib><creatorcontrib>Chhabria, Amit</creatorcontrib><creatorcontrib>Manwani, Rashmi</creatorcontrib><creatorcontrib>Asrani, Priyanka</creatorcontrib><title>Automated visual inspection of silicon detectors in CMS experiment</title><title>arXiv.org</title><description>In the CMS experiment at CERN, Geneva, a large number of HGCAL sensor modules are fabricated in advanced laboratories around the world. Each sensor module contains about 700 checkpoints for visual inspection thus making it almost impossible to carry out such inspection manually. As artificial intelligence is more and more widely used in manufacturing, traditional detection technologies are gradually being intelligent. In order to more accurately evaluate the checkpoints, we propose to use deep learning-based object detection techniques to detect manufacturing defects in testing large numbers of modules automatically.</description><subject>Artificial intelligence</subject><subject>Inspection</subject><subject>Manufacturing defects</subject><subject>Modules</subject><subject>Object recognition</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjcsKwjAURIMgWLT_EHBdyMPabrUoblzpvoT2FlLSJOYm4uebhR_gag5zBmZFCiElr9qDEBtSIs6MMXFsRF3LgpxPKbpFRRjpW2NShmqLHoaonaVuoqiNHjKOEHPpAmZPu_uDwsdD0AvYuCPrSRmE8pdbsr9ent2t8sG9EmDsZ5eCzarPt7LhjLdM_rf6AuiEOg8</recordid><startdate>20220603</startdate><enddate>20220603</enddate><creator>Giri, Nupur</creator><creator>Dugad, Shashi</creator><creator>Chhabria, Amit</creator><creator>Manwani, Rashmi</creator><creator>Asrani, Priyanka</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220603</creationdate><title>Automated visual inspection of silicon detectors in CMS experiment</title><author>Giri, Nupur ; Dugad, Shashi ; Chhabria, Amit ; Manwani, Rashmi ; Asrani, Priyanka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26737101803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Inspection</topic><topic>Manufacturing defects</topic><topic>Modules</topic><topic>Object recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Giri, Nupur</creatorcontrib><creatorcontrib>Dugad, Shashi</creatorcontrib><creatorcontrib>Chhabria, Amit</creatorcontrib><creatorcontrib>Manwani, Rashmi</creatorcontrib><creatorcontrib>Asrani, Priyanka</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giri, Nupur</au><au>Dugad, Shashi</au><au>Chhabria, Amit</au><au>Manwani, Rashmi</au><au>Asrani, Priyanka</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Automated visual inspection of silicon detectors in CMS experiment</atitle><jtitle>arXiv.org</jtitle><date>2022-06-03</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>In the CMS experiment at CERN, Geneva, a large number of HGCAL sensor modules are fabricated in advanced laboratories around the world. Each sensor module contains about 700 checkpoints for visual inspection thus making it almost impossible to carry out such inspection manually. As artificial intelligence is more and more widely used in manufacturing, traditional detection technologies are gradually being intelligent. In order to more accurately evaluate the checkpoints, we propose to use deep learning-based object detection techniques to detect manufacturing defects in testing large numbers of modules automatically.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2673710180 |
source | Free E- Journals |
subjects | Artificial intelligence Inspection Manufacturing defects Modules Object recognition |
title | Automated visual inspection of silicon detectors in CMS experiment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T09%3A32%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Automated%20visual%20inspection%20of%20silicon%20detectors%20in%20CMS%20experiment&rft.jtitle=arXiv.org&rft.au=Giri,%20Nupur&rft.date=2022-06-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2673710180%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2673710180&rft_id=info:pmid/&rfr_iscdi=true |