Automated visual inspection of silicon detectors in CMS experiment
In the CMS experiment at CERN, Geneva, a large number of HGCAL sensor modules are fabricated in advanced laboratories around the world. Each sensor module contains about 700 checkpoints for visual inspection thus making it almost impossible to carry out such inspection manually. As artificial intell...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-06 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the CMS experiment at CERN, Geneva, a large number of HGCAL sensor modules are fabricated in advanced laboratories around the world. Each sensor module contains about 700 checkpoints for visual inspection thus making it almost impossible to carry out such inspection manually. As artificial intelligence is more and more widely used in manufacturing, traditional detection technologies are gradually being intelligent. In order to more accurately evaluate the checkpoints, we propose to use deep learning-based object detection techniques to detect manufacturing defects in testing large numbers of modules automatically. |
---|---|
ISSN: | 2331-8422 |