New lower bounds on crossing numbers of \(K_{m,n}\) from semidefinite programming
In this paper, we use semidefinite programming and representation theory to compute new lower bounds on the crossing number of the complete bipartite graph \(K_{m,n}\), extending a method from de Klerk et al. [SIAM J. Discrete Math. 20 (2006), 189--202] and the subsequent reduction by De Klerk, Pase...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we use semidefinite programming and representation theory to compute new lower bounds on the crossing number of the complete bipartite graph \(K_{m,n}\), extending a method from de Klerk et al. [SIAM J. Discrete Math. 20 (2006), 189--202] and the subsequent reduction by De Klerk, Pasechnik and Schrijver [Math. Prog. Ser. A and B, 109 (2007) 613--624]. We exploit the full symmetry of the problem using a novel decomposition technique. This results in a full block-diagonalization of the underlying matrix algebra, which we use to improve bounds on several concrete instances. Our results imply that \(\text{cr}(K_{10,n}) \geq 4.87057 n^2 - 10n\), \(\text{cr}(K_{11,n}) \geq 5.99939 n^2-12.5n\), \(\text{cr}(K_{12,n}) \geq 7.25579 n^2 - 15n\), \(\text{cr}(K_{13,n}) \geq 8.65675 n^2-18n\) for all \(n\). The latter three bounds are computed using a new and well-performing relaxation of the original semidefinite programming bound. This new relaxation is obtained by only requiring one small matrix block to be positive semidefinite. |
---|---|
ISSN: | 2331-8422 |