Consolidation of a Certain Discrete Probability Distribution with a Subclass of Bi-Univalent Functions Involving Gegenbauer Polynomials
In this work, we introduce and investigate a new subclass of analytic bi-univalent functions based on subordination conditions between the zero-truncated Poisson distribution and Gegenbauer polynomials. More precisely, we will estimate the first two initial Taylor–Maclaurin coefficients and solve th...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2022, Vol.2022, p.1-6 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we introduce and investigate a new subclass of analytic bi-univalent functions based on subordination conditions between the zero-truncated Poisson distribution and Gegenbauer polynomials. More precisely, we will estimate the first two initial Taylor–Maclaurin coefficients and solve the Fekete–Szegö functional problem for functions belonging to this new subclass. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2022/6354994 |