Root subgroups on affine spherical varieties

Given a connected reductive algebraic group G and a Borel subgroup  B ⊆ G , we study B -normalized one-parameter additive group actions on affine spherical G -varieties. We establish basic properties of such actions and their weights and discuss many examples exhibiting various features. We propose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Selecta mathematica (Basel, Switzerland) Switzerland), 2022-07, Vol.28 (3), Article 60
Hauptverfasser: Arzhantsev, Ivan, Avdeev, Roman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a connected reductive algebraic group G and a Borel subgroup  B ⊆ G , we study B -normalized one-parameter additive group actions on affine spherical G -varieties. We establish basic properties of such actions and their weights and discuss many examples exhibiting various features. We propose a construction of such actions that generalizes the well-known construction of normalized one-parameter additive group actions on affine toric varieties. Using this construction, for every affine horospherical G -variety  X we obtain a complete description of all G -normalized one-parameter additive group actions on  X and show that the open G -orbit in  X can be connected with every G -stable prime divisor via a suitable choice of a B -normalized one-parameter additive group action. Finally, when G is of semisimple rank 1, we obtain a complete description of all B -normalized one-parameter additive group actions on affine spherical G -varieties having an open orbit of a maximal torus T ⊆ B .
ISSN:1022-1824
1420-9020
DOI:10.1007/s00029-022-00775-1