Graph Neural Networks With Convolutional ARMA Filters

Popular graph neural networks implement convolution operations on graphs based on polynomial spectral filters. In this paper, we propose a novel graph convolutional layer inspired by the auto-regressive moving average (ARMA) filter that, compared to polynomial ones, provides a more flexible frequenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2022-07, Vol.44 (7), p.3496-3507
Hauptverfasser: Bianchi, Filippo Maria, Grattarola, Daniele, Livi, Lorenzo, Alippi, Cesare
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Popular graph neural networks implement convolution operations on graphs based on polynomial spectral filters. In this paper, we propose a novel graph convolutional layer inspired by the auto-regressive moving average (ARMA) filter that, compared to polynomial ones, provides a more flexible frequency response, is more robust to noise, and better captures the global graph structure. We propose a graph neural network implementation of the ARMA filter with a recursive and distributed formulation, obtaining a convolutional layer that is efficient to train, localized in the node space, and can be transferred to new graphs at test time. We perform a spectral analysis to study the filtering effect of the proposed ARMA layer and report experiments on four downstream tasks: semi-supervised node classification, graph signal classification, graph classification, and graph regression. Results show that the proposed ARMA layer brings significant improvements over graph neural networks based on polynomial filters.
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2021.3054830