Spinel LiNi0.5Mn1.5O4 shell enables Ni-rich layered oxide cathode with improved cycling stability and rate capability for high-energy lithium-ion batteries

•Core-shell structure Ni-rich layered oxides is prepared for lithium-ion batteries.•Spinel LiNi0.5Mn1.5O4 shell enhances the structural and thermal stability of LiNi0.9Co0.1O2.•LiNi0.5Mn1.5O4 shell endows composite material with superior cyclability and rate capability.•LiNi0.5Mn1.5O4 shell ameliora...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2022-06, Vol.418, p.140352, Article 140352
Hauptverfasser: Xia, Yang, Ren, Xiaohang, Xiao, Zhen, Gan, Yongping, Zhang, Jun, Huang, Hui, He, Xinping, Mao, Qinzhong, Wang, Guoguang, Zhang, Wenkui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Core-shell structure Ni-rich layered oxides is prepared for lithium-ion batteries.•Spinel LiNi0.5Mn1.5O4 shell enhances the structural and thermal stability of LiNi0.9Co0.1O2.•LiNi0.5Mn1.5O4 shell endows composite material with superior cyclability and rate capability.•LiNi0.5Mn1.5O4 shell ameliorates the high-voltage charging capability and thermal stability. Increasing the charging cut-off voltage is an effective strategy to achieve high energy density Ni-rich layered oxide cathode materials, however the dramatic deterioration of cycling lifespan and thermal stability still remain great challenges in large-scale practical applications. Herein, a rationally designed core-shell structure LiNi0.9Co0.1O2@LiNi0.5Mn1.5O4 composite composed of spinel structure Mn-rich LiNi0.5Mn1.5O4 shell and layered structure Ni-rich LiNi0.9Co0.1O2 core is proposed to enhance the structure stability and thermal stability under high-voltage application scenario. Compared to the pristine LiNi0.9Co0.1O2 cathode, the core-shell structure LiNi0.9Co0.1O2@LiNi0.5Mn1.5O4 composite with optimized LiNi0.5Mn1.5O4 shell exhibits high reversible specific capacity (195.5 mA h g − 1 at 0.5 C), remarkable cycling stability (86% capacity retention after 100 cycles) and superior rate capability (162.5 mA h g − 1 at 5.0 C) within 2.8 V-4.5 V. The comprehensively improved electrochemical performance is mainly attributed to the Mn-rich LiNi0.5Mn1.5O4 shell, which not only effectively prevents the phase transition and microstructural collapse, but also ameliorates the Li+ transport ability, high-voltage charging capability and thermal stability. Such novel core-shell structure LiNi0.9Co0.1O2@LiNi0.5Mn1.5O4 composite as promising cathode is highly expected to greatly promote the practical application of high energy density lithium-ion batteries. [Display omitted]
ISSN:0013-4686
1873-3859
DOI:10.1016/j.electacta.2022.140352