Wind turbine generator prognostics using field SCADA data
This paper presents a novel prognostic method to estimate the remaining useful life (RUL) of generators using the SCADA (Supervisory Control And Data Acquisition) systems installed in wind turbines. A data-driven wind turbine anomaly classification method is developed. The anomalies are quantified i...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2022-05, Vol.2265 (3), p.32111 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a novel prognostic method to estimate the remaining useful life (RUL) of generators using the SCADA (Supervisory Control And Data Acquisition) systems installed in wind turbines. A data-driven wind turbine anomaly classification method is developed. The anomalies are quantified into a health indicator to measure the component degradation over time. An Autoregressive Integrated Moving Average (ARIMA) time series forecasting technique is then applied to predict the RUL of the wind turbine generator. The proposed method has been validated using industry field data showing accurate predictions of RUL with a 21 day lead time for maintenance of the turbine. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/2265/3/032111 |