A novel fetal ecg signal extraction from maternal ecg signal using conditional generative adversarial networks (CGAN)

Fetal Electrocardiogram (ECG) signal extraction from non-invasive abdominal ECG signal is one of the important clinical practices followed to observe the fetal health state. Information about heart growth and health conditions of a fetus can be observed from fetal ECG signals. However, acquiring fet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2022-01, Vol.43 (1), p.801-811
Hauptverfasser: Senthil Vadivu, M., Kavithaa, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fetal Electrocardiogram (ECG) signal extraction from non-invasive abdominal ECG signal is one of the important clinical practices followed to observe the fetal health state. Information about heart growth and health conditions of a fetus can be observed from fetal ECG signals. However, acquiring fetal ECG from abdominal ECG signals is still considered as a challenging task in biomedical analysis. This is mainly due to corrupted high amplitude maternal ECG signals, low signal to noise ratio of fetal ECG signal, difficulties in reduction of QRS (Q wave, R wave, S wave) complexities, fetal ECG signal superimposed characteristics, other motion, and electromyography artifacts. To reduce these conventional challenges, in fetal ECG analysis of a novel Conditional Generative adversarial network (CGAN) is introduced in this research work to extract the fetal ECG signal. The proposed classification model was classified efficiently in fetal ECG signals from non-invasive abdominal ECG signals. The experimental analysis demonstrates that the proposed network model provides better results in terms of sensitivity, specificity, and accuracy compared to the conventional fetal ECG extraction models like singular value decomposition, periodic component analysis, and Adaptive neuro-fuzzy inference system.
ISSN:1064-1246
1875-8967
DOI:10.3233/JIFS-212465