Indoor Partition Attenuations and Base Station Deployments for the 5G Wireless Communications
Currently, as the widespread usage of the smart devices in our daily life, the demands of high data rate and low latency services become important issues to facilitate various applications. However, high data rate service usually implies large bandwidth requirement. To solve the problem of bandwidth...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Communications 2022/06/01, Vol.E105.B(6), pp.729-736 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Currently, as the widespread usage of the smart devices in our daily life, the demands of high data rate and low latency services become important issues to facilitate various applications. However, high data rate service usually implies large bandwidth requirement. To solve the problem of bandwidth shortage below 6GHz (sub-6G), future wireless communications can be up-converted to the millimeter-wave (mm-wave) bands. Nevertheless, mm-wave frequency bands suffer from high channel attenuation and serious penetration loss compared with sub-6G frequency bands, and the signal transmission in the indoor environment will furthermore be affected by various partition materials, such as concrete, wood, glass, etc. Therefore, the fifth-generation (5G) mobile communication system may use multiple small cells (SC) to overcome the signal attenuation caused by using mm-wave bands. This paper will analyze the attenuation characteristics of some common partition materials in indoor environments. Besides, the performances, such as the received signal power, signal to interference plus noise ratio (SINR) and system capacity for different SC deployments are simulated and analyzed to provide the suitable guideline for each SC deployments. |
---|---|
ISSN: | 0916-8516 1745-1345 |
DOI: | 10.1587/transcom.2021ISP0001 |