The existence of G-invariant constant mean curvature hypersurfaces

In this paper, we consider a closed Riemannian manifold M n + 1 with dimension 3 ≤ n + 1 ≤ 7 , and a compact Lie group G acting as isometries on M with cohomogeneity at least 3. Suppose the union of non-principal orbits M \ M reg is a smooth embedded submanifold of M with dimension at most n - 2 . T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2022-08, Vol.61 (4), Article 145
Hauptverfasser: Wang, Tongrui, Wu, Zhiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider a closed Riemannian manifold M n + 1 with dimension 3 ≤ n + 1 ≤ 7 , and a compact Lie group G acting as isometries on M with cohomogeneity at least 3. Suppose the union of non-principal orbits M \ M reg is a smooth embedded submanifold of M with dimension at most n - 2 . Then for any c ∈ R , we show the existence of a nontrivial, smooth, closed, almost embedded, G -invariant hypersurface Σ n of constant mean curvature c .
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-022-02251-2