The existence of G-invariant constant mean curvature hypersurfaces
In this paper, we consider a closed Riemannian manifold M n + 1 with dimension 3 ≤ n + 1 ≤ 7 , and a compact Lie group G acting as isometries on M with cohomogeneity at least 3. Suppose the union of non-principal orbits M \ M reg is a smooth embedded submanifold of M with dimension at most n - 2 . T...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2022-08, Vol.61 (4), Article 145 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider a closed Riemannian manifold
M
n
+
1
with dimension
3
≤
n
+
1
≤
7
, and a compact Lie group
G
acting as isometries on
M
with cohomogeneity at least 3. Suppose the union of non-principal orbits
M
\
M
reg
is a smooth embedded submanifold of
M
with dimension at most
n
-
2
. Then for any
c
∈
R
, we show the existence of a nontrivial, smooth, closed, almost embedded,
G
-invariant hypersurface
Σ
n
of constant mean curvature
c
. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-022-02251-2 |