Interactive Transfer Learning-Assisted Fuzzy Neural Network

Transfer learning algorithm can provide a framework to utilize the previous knowledge to train fuzzy neural network (FNN). However, the performance of TL-based FNN will be destroyed by the knowledge over-fitting problem in the learning process. To solve this problem, an interactive transfer learning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on fuzzy systems 2022-06, Vol.30 (6), p.1900-1913
Hauptverfasser: Han, Honggui, Liu, Hongxu, Liu, Zheng, Qiao, Junfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transfer learning algorithm can provide a framework to utilize the previous knowledge to train fuzzy neural network (FNN). However, the performance of TL-based FNN will be destroyed by the knowledge over-fitting problem in the learning process. To solve this problem, an interactive transfer learning (ITL) algorithm, which can alleviate the negative transfer among different domains to improve the learning performance of FNN, is designed and analyzed in this article. This ITL-assisted FNN (ITL-FNN) contains the following advantages. First, a knowledge filter algorithm is developed to reconstruct the knowledge in source scene by balancing the matching accuracy and diversity. Then, the knowledge from source scene can fit the instance of target scene with suitable accuracy. Second, a self-balancing mechanism is designed to balance the driven information between the source and target scenes. Then, the knowledge can be refitted to reduce the useless information. Third, a structural competition algorithm is proposed to adjust the knowledge of FNN. Then, the proposed ITL-FNN can achieve compact structure to improve the generalization performance. Finally, some benchmark problems and industrial applications are provided to demonstrate the merits of ITL-FNN.
ISSN:1063-6706
1941-0034
DOI:10.1109/TFUZZ.2021.3070156