Additive and synergistic interactions of 4-hydroxyphenylpyruvate dioxygenase (HPPD) and photosystem II (PSII) inhibitors for the control of glyphosate-resistant horseweed (Conyza canadensis) in corn
Glyphosate-resistant (GR) horseweed [Conyza canadensis (L.) Cronquist; syn.: Erigeron canadensis L.] interference can substantially reduce corn (Zea mays L.) yield. The complementary activity of 4-hydroxyphenylpyruvate dioxygenase (HPPD) and photosystem II (PSII) inhibitors has been investigated for...
Gespeichert in:
Veröffentlicht in: | Weed science 2022-05, Vol.70 (3), p.319-327 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Glyphosate-resistant (GR) horseweed [Conyza canadensis (L.) Cronquist; syn.: Erigeron canadensis L.] interference can substantially reduce corn (Zea mays L.) yield. The complementary activity of 4-hydroxyphenylpyruvate dioxygenase (HPPD) and photosystem II (PSII) inhibitors has been investigated for the control of several weed species, and in many cases has been synergistic; however, there is little information on the interaction of HPPD- and PSII-inhibiting herbicides for postemergence control of GR C. canadensis in corn. Four field trials were studied over 2 yr (2019, 2020) in Ontario, Canada, in commercial corn fields with natural infestations of GR C. canadensis to evaluate the level of GR C. canadensis control with three HPPD-inhibiting herbicides (mesotrione, tolpyralate, and topramezone) and three PSII-inhibiting herbicides (atrazine, bromoxynil, and bentazon) applied individually and in tank-mix combinations, and to document the interaction of the three HPPD inhibitors tank mixed with the three PSII inhibitors. Mesotrione, tolpyralate, and topramezone controlled GR C. canadensis 83%, 84%, and 72%, respectively, at 8 wk after application (WAA). Bromoxynil and bentazon controlled GR C. canadensis 71% and 79%, respectively, while atrazine provided only 31% control at 8 WAA. The joint application of atrazine, bromoxynil, or bentazon with mesotrione increased GR C. canadensis control from 83% to 100% at 8 WAA. Tolpyralate tank mixed with atrazine, bromoxynil, or bentazon controlled GR C. canadensis 96%, 98%, and 98%, respectively, which was comparable to the mesotrione tank mixes at 8 WAA. Topramezone plus atrazine, bromoxynil, or bentazon controlled GR C. canadensis 91%, 93%, and 95%, respectively, at 8 WAA. Interactions between HPPD and PSII inhibitors were synergistic for all combinations of mesotrione or tolpyralate with atrazine, bromoxynil, or bentazon. The interaction between topramezone and PSII inhibitors was additive. All nine tank mixes controlled GR C. canadensis >90%. This study concludes that bromoxynil or bentazon, instead of atrazine, can be co-applied with mesotrione, tolpyralate, or topramezone without compromising GR C. canadensis control in corn. |
---|---|
ISSN: | 0043-1745 1550-2759 |
DOI: | 10.1017/wsc.2022.13 |