Nonisotropic chaos induced by snap-back repellers and heteroclinic cycles of 3-D hyperbolic PDEs
This paper mainly studies the nonisotropic chaos of a class of 3-D linear hyperbolic PDE systems with superlinear boundary conditions. Using the snap-back repellers and heteroclinic cycles theories, the system with a linear and superlinear boundary condition is rigorously proved to be Devaney chaos,...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2022-06, Vol.108 (4), p.4399-4413 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper mainly studies the nonisotropic chaos of a class of 3-D linear hyperbolic PDE systems with superlinear boundary conditions. Using the snap-back repellers and heteroclinic cycles theories, the system with a linear and superlinear boundary condition is rigorously proved to be Devaney chaos, distributional chaos, and
ω
-
chaos, and have positive entropy. The chaotic results are further extended to the system with two superlinear boundary conditions. Two examples illustrating the theoretical results are presented. |
---|---|
ISSN: | 0924-090X 1573-269X |
DOI: | 10.1007/s11071-022-07369-8 |