Nonisotropic chaos induced by snap-back repellers and heteroclinic cycles of 3-D hyperbolic PDEs

This paper mainly studies the nonisotropic chaos of a class of 3-D linear hyperbolic PDE systems with superlinear boundary conditions. Using the snap-back repellers and heteroclinic cycles theories, the system with a linear and superlinear boundary condition is rigorously proved to be Devaney chaos,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2022-06, Vol.108 (4), p.4399-4413
Hauptverfasser: Xiang, Qiaomin, Zhu, Pengxian, Yang, Qigui, Park, Ju H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper mainly studies the nonisotropic chaos of a class of 3-D linear hyperbolic PDE systems with superlinear boundary conditions. Using the snap-back repellers and heteroclinic cycles theories, the system with a linear and superlinear boundary condition is rigorously proved to be Devaney chaos, distributional chaos, and ω - chaos, and have positive entropy. The chaotic results are further extended to the system with two superlinear boundary conditions. Two examples illustrating the theoretical results are presented.
ISSN:0924-090X
1573-269X
DOI:10.1007/s11071-022-07369-8