Analytic surgery and gluing of the Bismut-Lott torsion form and eta form

Given a fiber bundle with closed connected fibers, and a family of separating hypersurfaces, we study the behavior of the Bismut-Lott analytic torsion form, and the eta form for a duality bundle, under analytic surgery in the sense of Hassell, Mazzeo and Melrose. We find that under the surgery limit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-09
1. Verfasser: Bing Kwan So
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a fiber bundle with closed connected fibers, and a family of separating hypersurfaces, we study the behavior of the Bismut-Lott analytic torsion form, and the eta form for a duality bundle, under analytic surgery in the sense of Hassell, Mazzeo and Melrose. We find that under the surgery limit, the rescaled heat kernel is non-singular, while both the Bismut-Lott analytic torsion form and eta form can be written as the sum of a logarithmic term, which satisfies the Igusa additivity property, the b- Bismut-Lott analytic torsion form (respectively the b- eta form), and an error term coming from the reduced normal operator. Hence we obtain a gluing formula for these invariants.
ISSN:2331-8422