Analytic surgery and gluing of the Bismut-Lott torsion form and eta form
Given a fiber bundle with closed connected fibers, and a family of separating hypersurfaces, we study the behavior of the Bismut-Lott analytic torsion form, and the eta form for a duality bundle, under analytic surgery in the sense of Hassell, Mazzeo and Melrose. We find that under the surgery limit...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-09 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a fiber bundle with closed connected fibers, and a family of separating hypersurfaces, we study the behavior of the Bismut-Lott analytic torsion form, and the eta form for a duality bundle, under analytic surgery in the sense of Hassell, Mazzeo and Melrose. We find that under the surgery limit, the rescaled heat kernel is non-singular, while both the Bismut-Lott analytic torsion form and eta form can be written as the sum of a logarithmic term, which satisfies the Igusa additivity property, the b- Bismut-Lott analytic torsion form (respectively the b- eta form), and an error term coming from the reduced normal operator. Hence we obtain a gluing formula for these invariants. |
---|---|
ISSN: | 2331-8422 |