IoT-inspired Framework for Real-time Prediction of Forest Fire

Wildfires are one of the most devastating catastrophes and can inflict tremendous losses to life and nature. Moreover, the loss of civilization is incomprehensible, potentially extending suddenly over vast land sectors. Global warming has contributed to increased forest fires, but it needs immediate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computers, communications & control communications & control, 2022-06, Vol.17 (3)
1. Verfasser: Aljumah, Abdullah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wildfires are one of the most devastating catastrophes and can inflict tremendous losses to life and nature. Moreover, the loss of civilization is incomprehensible, potentially extending suddenly over vast land sectors. Global warming has contributed to increased forest fires, but it needs immediate attention from the organizations involved. This analysis aims to forecast forest fires to reduce losses and take decisive measures in the direction of protection. Specifically, this study suggests an energy-efficient IoT architecture for the early detection of wildfires backed by fog-cloud computing technologies. To evaluate the repeatable information obtained from IoT sensors in a time-sensitive manner, Jaccard similarity analysis is used. This data is assessed in the fog processing layer and reduces the single value of multidimensional data called the Forest Fire Index. Finally, based on Wildfire Triggering Criteria, the Artificial Neural Network (ANN) is used to simulate the susceptibility of the forest area. ANN are intelligent techniques for inferring future outputs as these can be made hybrid with fuzzy methods for decision-modeling. For productive visualization of the geographical location of wildfire vulnerability, the Self-Organized Mapping Technique is used. Simulation of the implementation is done over multiple datasets. For total efficiency assessment, outcomes are contrasted in comparison to other techniques.
ISSN:1841-9836
1841-9844
DOI:10.15837/ijccc.2022.3.4371