Evaluation of InVEST’s Water Ecosystem Service Models in a Brazilian Subtropical Basin

The biophysical modeling of water ecosystem services is crucial to understanding their availability, vulnerabilities, and fluxes. Among the most popular models, the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) models stand out. While many studies have used them, few have assess...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2022-05, Vol.14 (10), p.1559
Hauptverfasser: Anjinho, Phelipe da Silva, Barbosa, Mariana Abibi Guimarães Araujo, Mauad, Frederico Fábio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The biophysical modeling of water ecosystem services is crucial to understanding their availability, vulnerabilities, and fluxes. Among the most popular models, the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) models stand out. While many studies have used them, few have assessed their performance. This study evaluates the performance of InVEST’s Seasonal Water Yield, Nutrient Delivery Ratio, and Sediment Delivery Ratio models in a subtropical basin in southeastern Brazil on temporal and spatial scales, using 39 years of streamflow data, 29 for total phosphorus and total nitrogen, and 19 for total suspended solids. Statistical indicators R2, PBIAS, and NSE, were also calculated. The performance of the models varied according to the type of simulated WES and analysis scales used, with the Seasonal Water Yield model demonstrating the best performance and effectively representing the spatial and temporal variability of the average annual streamflow. All models performed well in simulating long-term mean values when compared to observed data. While one should bear in mind the study’s limitations, the results indicate that the models perform well in terms of relative magnitude, although their application in studies involving water-resource management and decision making is limited.
ISSN:2073-4441
2073-4441
DOI:10.3390/w14101559