Canonical stratification of definable Lie groupoids

Our aim is to precisely present a tame topology counterpart to canonical stratification of a Lie groupoid. We consider a definable Lie groupoid in semialgebraic, subanalytic, o-minimal over \(\mathbb{R}\), or more generally, Shiota's \(\mathfrak{X}\)-category. We show that there exists a canoni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-02
1. Verfasser: Tanabe, Masato
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Our aim is to precisely present a tame topology counterpart to canonical stratification of a Lie groupoid. We consider a definable Lie groupoid in semialgebraic, subanalytic, o-minimal over \(\mathbb{R}\), or more generally, Shiota's \(\mathfrak{X}\)-category. We show that there exists a canonical Whitney stratification of the Lie groupoid into definable strata which are invariant under the groupoid action. This is a generalization and refinement of results on real algebraic group action which J. N. Mather and V. A. Vassiliev independently stated with sketchy proofs. A crucial change to their proofs is to use Shiota's isotopy lemma and approximation theorem in the context of tame topology.
ISSN:2331-8422