Canonical stratification of definable Lie groupoids
Our aim is to precisely present a tame topology counterpart to canonical stratification of a Lie groupoid. We consider a definable Lie groupoid in semialgebraic, subanalytic, o-minimal over \(\mathbb{R}\), or more generally, Shiota's \(\mathfrak{X}\)-category. We show that there exists a canoni...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-02 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Our aim is to precisely present a tame topology counterpart to canonical stratification of a Lie groupoid. We consider a definable Lie groupoid in semialgebraic, subanalytic, o-minimal over \(\mathbb{R}\), or more generally, Shiota's \(\mathfrak{X}\)-category. We show that there exists a canonical Whitney stratification of the Lie groupoid into definable strata which are invariant under the groupoid action. This is a generalization and refinement of results on real algebraic group action which J. N. Mather and V. A. Vassiliev independently stated with sketchy proofs. A crucial change to their proofs is to use Shiota's isotopy lemma and approximation theorem in the context of tame topology. |
---|---|
ISSN: | 2331-8422 |