Optimization Design and Injury Analysis of Driver’s Restraint System in Sedan Small Offset Collision

A combination of airbag, seatbelt, and other restraint systems greatly reduces injury to drivers in small offset collisions. However, the airbag causes accidental injury to the driver in the deployment process. To maximize the protection effect of the restraint system on the driver, this study propo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2022-05, Vol.10 (5), p.940
Hauptverfasser: Yang, Xiuju, Shi, Jingjing, Fu, Qianying, Pu, Shanshan, Pan, Zhixin, Lian, Chunxiao, Yin, Zhiyong, Liu, Shengxiong, Wang, Guixue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A combination of airbag, seatbelt, and other restraint systems greatly reduces injury to drivers in small offset collisions. However, the airbag causes accidental injury to the driver in the deployment process. To maximize the protection effect of the restraint system on the driver, this study proposes a pre-tensioned force-limiting seatbelt. A small offset collision accident with video information was simulated by using a Neon sedan and the THUMS (v.4.0.2) finite element model. The effectiveness of the accident model and the matching use of a pre-tensioned force-limiting seatbelt and airbag for driver protection were verified. To obtain the best parameter matching of protection effect, first, the seatbelt force-limiting A, pre-tensioned force B, pre-tensioned time C, airbag ignition time D, and mass flow coefficient E were selected as influencing factors, and orthogonal tests with different factor levels were designed. Then, the direct analysis method was applied to analyze the influence laws of each factor on driver dynamic response and injury. In addition, the radial basis function surrogate model was constructed by synthesizing each kind of critical injury value to the human body. Combined with NSGA-II multi-objective genetic algorithm, the structural performance parameters of the restraint system were optimized and matched. Results showed that the optimal protection matching parameters of the restraint system were 4933.5 N−2499.9 N−16 ms−15.3 ms−0.5 (A−B−C−D−E). Finally, the best matching parameters were input into the accident model for verification. After optimization, the WIC and Nij of drivers were reduced by 37.9% and 45.3%, respectively. The results show that the optimized restraint system can protect the driver the most.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr10050940