Robust Output Feedback MPC for LPV Systems Using Interval Observers

This article addresses the problem of robust output feedback model predictive control for discrete-time, constrained, linear parameter-varying systems subject to (bounded) state and measurement disturbances. The vector of scheduling parameters is assumed to be an unmeasurable signal taking values in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2022-06, Vol.67 (6), p.3188-3195
Hauptverfasser: dos Reis de Souza, Alex, Efimov, Denis, Raissi, Tarek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article addresses the problem of robust output feedback model predictive control for discrete-time, constrained, linear parameter-varying systems subject to (bounded) state and measurement disturbances. The vector of scheduling parameters is assumed to be an unmeasurable signal taking values in a given compact set. The proposed controller incorporates an interval observer, that uses the available measurement to update the set-membership estimation of the states, and an interval predictor, used in the prediction step of the model predictive control (MPC) algorithm. The resulting MPC scheme offers guarantees on recursive feasibility, constraint satisfaction, and input-to-state stability in the terminal set. Furthermore, this novel algorithm shows low computation complexity and ease of implementation (similar to conventional MPC schemes).
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2021.3099449