Robust Output Feedback MPC for LPV Systems Using Interval Observers
This article addresses the problem of robust output feedback model predictive control for discrete-time, constrained, linear parameter-varying systems subject to (bounded) state and measurement disturbances. The vector of scheduling parameters is assumed to be an unmeasurable signal taking values in...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2022-06, Vol.67 (6), p.3188-3195 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article addresses the problem of robust output feedback model predictive control for discrete-time, constrained, linear parameter-varying systems subject to (bounded) state and measurement disturbances. The vector of scheduling parameters is assumed to be an unmeasurable signal taking values in a given compact set. The proposed controller incorporates an interval observer, that uses the available measurement to update the set-membership estimation of the states, and an interval predictor, used in the prediction step of the model predictive control (MPC) algorithm. The resulting MPC scheme offers guarantees on recursive feasibility, constraint satisfaction, and input-to-state stability in the terminal set. Furthermore, this novel algorithm shows low computation complexity and ease of implementation (similar to conventional MPC schemes). |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2021.3099449 |