Numerical study on entropy generation of CoFe2O4-water nanofluids turbulent flow in minichannels

This paper aims to study the entropy generation of CoFe2O4−water nanofluids in minichannels numerically. In the study, the Reynolds number range was chosen with five levels as 4000-20000 and the turbulent flow regime was considered. Pure water was chosen as base fluid and CoFe2O4−water nanofluids we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mandev, Emre, Manay, Eyüphan, Şahin, Bayram
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper aims to study the entropy generation of CoFe2O4−water nanofluids in minichannels numerically. In the study, the Reynolds number range was chosen with five levels as 4000-20000 and the turbulent flow regime was considered. Pure water was chosen as base fluid and CoFe2O4−water nanofluids were in three different particle volume fractions of 0.25%, 0.5%, and 1.0%. Numerical analyzes were performed for two minichannels with different diameters of 1 mm and 2 mm. The effects of the Reynolds number, nanoparticle concentrations, and minichannel diameters on the frictional entropy generation rates, thermal entropy generation rates, total entropy generation rates, and entropy generation number ratios were numerically analyzed. It was observed that frictional and total entropy generation rates increased as thermal entropy generation rates were decreasing with an increase in particle volume fraction. Also, it was determined that mini channel diameters have a strong effect on thermal entropy generation.
ISSN:0094-243X
1551-7616
DOI:10.1063/5.0083662