On the groups associated with a tropical n × n matrix

In this paper, the generalized centralizer group Un(A) of a tropical n×n matrix A and the centralizer group Pn(E) of a tropical idempotent normal matrix E are introduced and studied. It is proved that Un(A) is a product of two specific normal subgroups. And a structural description of Pn(E) is given...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2022-04, Vol.639, p.1-17
Hauptverfasser: Deng, Weina, Zhao, Xianzhong, Cheng, Yanliang, Yu, Baomin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the generalized centralizer group Un(A) of a tropical n×n matrix A and the centralizer group Pn(E) of a tropical idempotent normal matrix E are introduced and studied. It is proved that Un(A) is a product of two specific normal subgroups. And a structural description of Pn(E) is given when E is not strongly regular. It is also made some observations on E when Pn(E) is isomorphic to a 2-closed transitive permutation group on {1,2,…,n}.
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2021.12.021