Word-representability of split graphs generated by morphisms
A graph G=(V,E) is word-representable if and only if there exists a word w over the alphabet V such that letters x and y, x≠y, alternate in w if and only if xy∈E. A split graph is a graph in which the vertices can be partitioned into a clique and an independent set. There is a long line of research...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2022-06, Vol.314, p.284-303 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A graph G=(V,E) is word-representable if and only if there exists a word w over the alphabet V such that letters x and y, x≠y, alternate in w if and only if xy∈E. A split graph is a graph in which the vertices can be partitioned into a clique and an independent set. There is a long line of research on word-representable graphs in the literature, and recently, word-representability of split graphs has attracted interest.
In this paper, we first give a characterization of word-representable split graphs in terms of permutations of columns of the adjacency matrices. Then, we focus on the study of word-representability of split graphs obtained by iterations of a morphism, the notion coming from combinatorics on words. We prove a number of general theorems and provide a complete classification in the case of morphisms defined by 2 × 2 matrices. |
---|---|
ISSN: | 0166-218X 1872-6771 |
DOI: | 10.1016/j.dam.2022.02.023 |