A Solvothermal Synthetic Environmental Design for High‐Performance SnSe‐Based Thermoelectric Materials

SnSe is challenging to use in thermoelectric devices due to difficulties in simultaneously optimizing its thermoelectric and mechanical properties. Here, the authors show a unique solvothermal synthetic environmental design to fabricate super‐large and micro/nanoporous Sn0.965Se microplates by using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2022-05, Vol.12 (20), p.n/a
Hauptverfasser: Shi, Xiao‐Lei, Liu, Wei‐Di, Li, Meng, Sun, Qiang, Xu, Sheng‐Duo, Du, Du, Zou, Jin, Chen, Zhi‐Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:SnSe is challenging to use in thermoelectric devices due to difficulties in simultaneously optimizing its thermoelectric and mechanical properties. Here, the authors show a unique solvothermal synthetic environmental design to fabricate super‐large and micro/nanoporous Sn0.965Se microplates by using CrCl3. Cl− ions to trigger Sn‐vacancy formation and optimize the hole concentration to ≈3 × 1019 cm−3, while the as‐formed Cr(OH)3 colloidal precipitations act as “templates” to achieve micro/nanoporous features, leading to low lattice thermal conductivity of ≈0.2 W m−1 K−1 in the as‐sintered polycrystal, contributing to a high ZT of ≈2.4 at 823 K and an average ZT of ≈1.1. Of particular note, the polycrystal exhibits high hardness (≈2.26 GPa) and compression strength (≈109 MPa), strengthened by grain refinement and vacancy‐induced lattice distortions and dislocations; while a single‐leg device provides a stable output power (>100 mW) and conversion efficiency of ≈10% by a temperature difference of 425 K, indicating great potential for applying to practical thermoelectric devices. A solvothermal synthetic environmental design to fabricate super‐large and micro/nanoporous Sn0.965Se microplates using CrCl3 is employed, and the mechanically robust polycrystals sintered from these microplates exhibit a high ZT of ≈2.4 at 823 K and an average ZT of ≈1.1, leading to a conversion efficiency of ≈10% by a temperature difference of 425 K in the single‐leg device.
ISSN:1614-6832
1614-6840
DOI:10.1002/aenm.202200670