Secure and Lightweight Conditional Privacy-Preserving Authentication for Fog-Based Vehicular Ad Hoc Networks

Vehicular ad hoc networks (VANETs) play an ever-increasing important role in improving traffic management and enhancing driving safety. However, vehicular communication using a wireless channel faces security and privacy challenges. The conditional privacy-preserving authentication (CPPA) scheme is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2022-06, Vol.9 (11), p.8485-8497
Hauptverfasser: Zhong, Hong, Chen, Lei, Cui, Jie, Zhang, Jing, Bolodurina, Irina, Liu, Lu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vehicular ad hoc networks (VANETs) play an ever-increasing important role in improving traffic management and enhancing driving safety. However, vehicular communication using a wireless channel faces security and privacy challenges. The conditional privacy-preserving authentication (CPPA) scheme is suitable for solving the above challenges, but the existing identity-based CPPA schemes suffer from inborn key escrow issues. Motivated by this, we propose a lightweight CPPA scheme based on elliptic curve cryptography to solve the above issues, in which the pseudonym and public/private key pair of the vehicle is generated by itself, so that the proposed scheme avoids the key escrow issue. Furthermore, to achieve efficient vehicular communication, a CPPA scheme is proposed using a fog computing model that supports mobility, low latency, and location awareness. The pseudonym of the vehicle is generated by two hash chains in the proposed scheme, so that the storage overhead can be reduced efficiently under the condition that backward security is guaranteed. Security analysis shows that the scheme is secure under the random oracle and satisfies the security requirements of VANETs. Performance evaluation demonstrates that the proposed scheme outperforms related schemes in terms of computational and communication overhead.
ISSN:2327-4662
2327-4662
DOI:10.1109/JIOT.2021.3116039