New Bregman projection methods for solving pseudo-monotone variational inequality problem

In this work, we introduce two Bregman projection algorithms with self-adaptive stepsize for solving pseudo-monotone variational inequality problem in a Hilbert space. The weak and strong convergence theorems are established without the prior knowledge of Lipschitz constant of the cost operator. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mathematics & computing 2022-06, Vol.68 (3), p.1565-1589
Hauptverfasser: Sunthrayuth, Pongsakorn, Jolaoso, Lateef Olakunle, Cholamjiak, Prasit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we introduce two Bregman projection algorithms with self-adaptive stepsize for solving pseudo-monotone variational inequality problem in a Hilbert space. The weak and strong convergence theorems are established without the prior knowledge of Lipschitz constant of the cost operator. The convergence behavior of the proposed algorithms with various functions of the Bregman distance are presented. More so, the performance and efficiency of our methods are compared to other related methods in the literature.
ISSN:1598-5865
1865-2085
DOI:10.1007/s12190-021-01581-2