On the closure under infinitely divisible distribution roots

For some γ > 0, we show that the distribution class (L(γ) ∩ O S )\ S (γ) is not closed under infinitely divisible distribution roots, that is, we provide examples showing that some infinitely divisible distributions belong to this class but their corresponding Lévy distributions do not. To this e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lithuanian mathematical journal 2022, Vol.62 (2), p.259-287
Hauptverfasser: Xu, Hui, Wang, Yuebao, Cheng, Dongya, Yu, Changjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For some γ > 0, we show that the distribution class (L(γ) ∩ O S )\ S (γ) is not closed under infinitely divisible distribution roots, that is, we provide examples showing that some infinitely divisible distributions belong to this class but their corresponding Lévy distributions do not. To this end, we explore the structural properties of some distribution classes, give a positive conclusion to the Embrechts–Goldie conjecture, and study some properties of a transformation from a heavy-tailed distribution to a light-tailed one.
ISSN:0363-1672
1573-8825
DOI:10.1007/s10986-022-09558-9