Document Intelligence Metrics for Visually Rich Document Evaluation
The processing of Visually-Rich Documents (VRDs) is highly important in information extraction tasks associated with Document Intelligence. We introduce DI-Metrics, a Python library devoted to VRD model evaluation comprising text-based, geometric-based and hierarchical metrics for information extrac...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-05 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The processing of Visually-Rich Documents (VRDs) is highly important in information extraction tasks associated with Document Intelligence. We introduce DI-Metrics, a Python library devoted to VRD model evaluation comprising text-based, geometric-based and hierarchical metrics for information extraction tasks. We apply DI-Metrics to evaluate information extraction performance using publicly available CORD dataset, comparing performance of three SOTA models and one industry model. The open-source library is available on GitHub. |
---|---|
ISSN: | 2331-8422 |