Correct Bounds on the Ising Lace-Expansion Coefficients

The lace expansion for the Ising two-point function was successfully derived in (Sakai in Commun Math Phys 272:283–344, 2007, Proposition 1.1). It is an identity that involves an alternating series of lace-expansion coefficients. In the same paper, we claimed that the expansion coefficients obey cer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2022-06, Vol.392 (3), p.783-823
1. Verfasser: Sakai, Akira
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The lace expansion for the Ising two-point function was successfully derived in (Sakai in Commun Math Phys 272:283–344, 2007, Proposition 1.1). It is an identity that involves an alternating series of lace-expansion coefficients. In the same paper, we claimed that the expansion coefficients obey certain diagrammatic bounds which imply faster x -space decay (as the two-point function cubed) above the critical dimension d c ( = 4 for finite-variance models) if the spin-spin coupling is ferromagnetic, translation-invariant, summable and symmetric with respect to the underlying lattice symmetries. However, we recently found a flaw in the proof of (Sakai in Commun Math Phys 272:283–344, 2007, Lemma 4.2), a key lemma to the aforementioned diagrammatic bounds. In this paper, we no longer use the problematic (Sakai 2007, Lemma 4.2), and prove new diagrammatic bounds on the expansion coefficients that are slightly more complicated than those in (Sakai 2007, Proposition 4.1) but nonetheless obey the same fast decay above the critical dimension d c . Consequently, the lace-expansion results for the Ising and φ 4 models in the literature are all saved. The proof is based on the random-current representation and its source-switching technique of Griffiths, Hurst and Sherman, combined with a double expansion: a lace expansion for the lace-expansion coefficients.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-022-04354-5