Stable global well-posedness and global strong metric regularity

In this paper, in contrast to the literature on the tilt-stability only dealing with local minima, we introduce and study the ψ -tilt-stable global minimum and stable global φ -well-posedness with ψ and φ being the so-called admissible functions. We adopt global strong metric regularity of the subdi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization 2022-06, Vol.83 (2), p.359-376
Hauptverfasser: Zheng, Xi Yin, Zhu, Jiangxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, in contrast to the literature on the tilt-stability only dealing with local minima, we introduce and study the ψ -tilt-stable global minimum and stable global φ -well-posedness with ψ and φ being the so-called admissible functions. We adopt global strong metric regularity of the subdifferential mapping ∂ ^ f of the objective function f with respect to an admissible function ψ and prove that the global strong metric regularity of ∂ ^ f at 0 with respect to ψ implies the stable global φ -well-posedness of f with φ ( t ) = ∫ 0 t ψ ( s ) d s and that if f is convex then the converse implication also holds. Moreover, we establish the relationships between ψ -tilt-stable global minimum and stable global φ -well-posedness. Our results are new even in the convexity case.
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-021-01100-4