Stable global well-posedness and global strong metric regularity
In this paper, in contrast to the literature on the tilt-stability only dealing with local minima, we introduce and study the ψ -tilt-stable global minimum and stable global φ -well-posedness with ψ and φ being the so-called admissible functions. We adopt global strong metric regularity of the subdi...
Gespeichert in:
Veröffentlicht in: | Journal of global optimization 2022-06, Vol.83 (2), p.359-376 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, in contrast to the literature on the tilt-stability only dealing with local minima, we introduce and study the
ψ
-tilt-stable global minimum and stable global
φ
-well-posedness with
ψ
and
φ
being the so-called admissible functions. We adopt global strong metric regularity of the subdifferential mapping
∂
^
f
of the objective function
f
with respect to an admissible function
ψ
and prove that the global strong metric regularity of
∂
^
f
at 0 with respect to
ψ
implies the stable global
φ
-well-posedness of
f
with
φ
(
t
)
=
∫
0
t
ψ
(
s
)
d
s
and that if
f
is convex then the converse implication also holds. Moreover, we establish the relationships between
ψ
-tilt-stable global minimum and stable global
φ
-well-posedness. Our results are new even in the convexity case. |
---|---|
ISSN: | 0925-5001 1573-2916 |
DOI: | 10.1007/s10898-021-01100-4 |