Assessment of four-variable refined shear deformation theory for low-velocity impact analysis of curved sandwich beams
In this paper, the accuracy of the four-variable refined global-local (FRGL) shear deformation theory in the prediction of dynamic responses of curved sandwich beams under low-velocity impact has been investigated. The governing equations of motion of the curved sandwich beams are derived by employi...
Gespeichert in:
Veröffentlicht in: | European journal of mechanics, A, Solids A, Solids, 2022-07, Vol.94, p.104604, Article 104604 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the accuracy of the four-variable refined global-local (FRGL) shear deformation theory in the prediction of dynamic responses of curved sandwich beams under low-velocity impact has been investigated. The governing equations of motion of the curved sandwich beams are derived by employing a finite element (FE) model based on FRGL shear deformation theory. By using the method of truncated superimposition of modes, the size of the total dynamic system is firstly reduced. Then, the resulting dynamic system is solved via the state-space (SS) approach. For validation, curved sandwich beams with various deepness ratios and different boundary conditions are analyzed using the proposed model. Different materials and lay-up configurations were assumed for the face-sheets. The obtained results are validated through comparison with the results of ABAQUS simulations and other analytical and numerical results reported in the open literature. The comparisons show that the FRGL shear deformation theory in conjunction with the truncated reduced modal SS approach is a precise and computationally low-cost model for solving the dynamic problems of curved sandwich beams under impact loads.
•A new shear deformation theory is developed for low-velocity impact response of curved sandwich beams.•Truncated reduced modal state-space approach is used for solving the dynamic equations of system.•The presented formulation reduces the computational cost of the analysis enormously.•The presented formulation can predict the impact responses of curved sandwich beams with enough accuracy. |
---|---|
ISSN: | 0997-7538 1873-7285 |
DOI: | 10.1016/j.euromechsol.2022.104604 |