uniform convergence spaces

We show, for a commutative and integral quantale, that the recently introduced category of $\top$-uniform convergence spaces is a topological category which possesses natural function spaces, making it Cartesian closed. Furthermore, as two important examples for $\top$-uniform convergence spaces, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Iranian journal of fuzzy systems (Online) 2022-03, Vol.19 (2), p.133
Hauptverfasser: J¨ager, G., Yue, Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show, for a commutative and integral quantale, that the recently introduced category of $\top$-uniform convergence spaces is a topological category which possesses natural function spaces, making it Cartesian closed. Furthermore, as two important examples for $\top$-uniform convergence spaces, we study probabilistic uniform spaces and quantale-valued metric spaces. The underlying $\top$-convergence spaces are also described and it is shown that in the case of a probabilistic uniform space this $\top$-convergence is the convergence of a fuzzy topology with conical neighbourhood filters. Finally it is shown that the category of $\top$-uniform convergence spaces can be embedded into the category of stratified lattice-valued uniform convergence spaces as a reflective subcategory.
ISSN:1735-0654
2676-4334
DOI:10.22111/ijfs.2022.6795