Waterborne diseases vulnerability analysis using fuzzy analytic hierarchy process: a case study of Azamgarh city, India

This study presents the application of fuzzy analytic hierarchy process (FAHP) aided with geospatial analysis for identifying vulnerable zones to waterborne diseases in Azamgarh city, India. It synergistically employs two stages analyses; the first stage analyses eight determining criteria of waterb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Modeling earth systems and environment 2022-06, Vol.8 (2), p.2687-2713
Hauptverfasser: Ajmal, Uzma, Jamal, Saleha, Ahmad, Wani Suhail, Ali, Md Ashif, Ali, Md Babor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study presents the application of fuzzy analytic hierarchy process (FAHP) aided with geospatial analysis for identifying vulnerable zones to waterborne diseases in Azamgarh city, India. It synergistically employs two stages analyses; the first stage analyses eight determining criteria of waterborne diseases, five from socio-economic factors, one from criteria from drinking water (WQI) and two criteria from environmental factors to support the second stage analysis using FAHP. Moreover, weighted overlay analysis was utilised to produce final vulnerability map. The study of triangular fuzzy numbers and extent analysis shows that major responsible factors for controlling the distribution of waterborne diseases in the city are water quality index, irregular water supply and improper sanitation with 0.247, 0.204 and 0.194 weights respectively. The result shows that about 1.99% area in the city lies in very high vulnerability zone, 16.48% in high category, 37.11% in medium category, 37.30 in low category and 7.12% in very low category. Similarly, it has been found that most of the area under high vulnerable zones is found near the city centre in the central congested part of the city. Validation of the results with ground data of occurrence of waterborne diseases has shown that high incidence of waterborne diseases were in conformity with the most vulnerable zones of waterborne diseases. Hence, the current model to identify vulnerable zones to waterborne diseases is validated. The study result also suggests that the study approach adopted and its application process can be employed in other studies to identify vulnerable zones for various diseases.
ISSN:2363-6203
2363-6211
DOI:10.1007/s40808-021-01237-x