Existence of solutions to Chern–Simons–Higgs equations on graphs
Let G = ( V , E ) be a finite graph. We consider the existence of solutions to a generalized Chern–Simons–Higgs equation Δ u = - λ e g ( u ) e g ( u ) - 1 2 + 4 π ∑ j = 1 N δ p j on G , where λ is a positive constant; g ( u ) is the inverse function of u = f ( υ ) = 1 + υ - e υ on ( - ∞ , 0 ] ; N is...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2022-08, Vol.61 (4), Article 139 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
G
=
(
V
,
E
)
be a finite graph. We consider the existence of solutions to a generalized Chern–Simons–Higgs equation
Δ
u
=
-
λ
e
g
(
u
)
e
g
(
u
)
-
1
2
+
4
π
∑
j
=
1
N
δ
p
j
on
G
, where
λ
is a positive constant;
g
(
u
) is the inverse function of
u
=
f
(
υ
)
=
1
+
υ
-
e
υ
on
(
-
∞
,
0
]
;
N
is a positive integer;
p
1
,
p
2
,
…
,
p
N
are distinct vertices of
V
and
δ
p
j
is the Dirac delta mass at
p
j
. We prove that there is critical value
λ
c
such that the generalized Chern–Simons–Higgs equation has a solution if and only if
λ
≥
λ
c
. We also prove the existence of solutions to the Chern–Simons–Higgs equation
Δ
u
=
λ
e
u
(
e
u
-
1
)
+
4
π
∑
j
=
1
N
δ
p
j
on
G
when
λ
takes the critical value
λ
c
and this completes the results of Huang et al. (Commun Math Phys 377:613-621, 2020). |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-022-02238-z |