Relative Cauchy Evolution for Linear Homotopy AQFTs

This paper develops a concept of relative Cauchy evolution for the class of homotopy algebraic quantum field theories (AQFTs) that are obtained by canonical commutation relation quantization of Poisson chain complexes. The key element of the construction is a rectification theorem proving that the h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2022-06, Vol.392 (2), p.621-657
Hauptverfasser: Bruinsma, Simen, Fewster, Christopher J., Schenkel, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper develops a concept of relative Cauchy evolution for the class of homotopy algebraic quantum field theories (AQFTs) that are obtained by canonical commutation relation quantization of Poisson chain complexes. The key element of the construction is a rectification theorem proving that the homotopy time-slice axiom, which is a higher categorical relaxation of the time-slice axiom of AQFT, can be strictified for theories in this class. The general concept is illustrated through a detailed study of the relative Cauchy evolution for the homotopy AQFT associated with linear Yang-Mills theory, for which the usual stress-energy tensor is recovered.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-022-04352-7