Hierarchical Ensemble Kalman Methods with Sparsity-Promoting Generalized Gamma Hyperpriors

This paper introduces a computational framework to incorporate flexible regularization techniques in ensemble Kalman methods for nonlinear inverse problems. The proposed methodology approximates the maximum a posteriori (MAP) estimate of a hierarchical Bayesian model characterized by a conditionally...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-05
Hauptverfasser: Kim, Hwanwoo, Sanz-Alonso, Daniel, Strang, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kim, Hwanwoo
Sanz-Alonso, Daniel
Strang, Alexander
description This paper introduces a computational framework to incorporate flexible regularization techniques in ensemble Kalman methods for nonlinear inverse problems. The proposed methodology approximates the maximum a posteriori (MAP) estimate of a hierarchical Bayesian model characterized by a conditionally Gaussian prior and generalized gamma hyperpriors. Suitable choices of hyperparameters yield sparsity-promoting regularization. We propose an iterative algorithm for MAP estimation, which alternates between updating the unknown with an ensemble Kalman method and updating the hyperparameters in the regularization to promote sparsity. The effectiveness of our methodology is demonstrated in several computed examples, including compressed sensing and subsurface flow inverse problems.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2667075258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2667075258</sourcerecordid><originalsourceid>FETCH-proquest_journals_26670752583</originalsourceid><addsrcrecordid>eNqNi80KgkAYAJcgSMp3WOgs2Nqq9zCFCII6dZFNv3Jlf-zblbCnr0MP0GkOMzMjAUuSTZRvGVuQ0Lk-jmOWZozzJCDXSgIKbDrZCEUL40DfFNCDUFoYegTf2dbRl_QdPQ8CnfRTdEKrrZfmQUsw31vJN7S0FFoLWk0D4IDSoluR-V0oB-GPS7LeF5ddFQ1onyM4X_d2RPNVNUvTLM4443nyX_UBb_5DTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667075258</pqid></control><display><type>article</type><title>Hierarchical Ensemble Kalman Methods with Sparsity-Promoting Generalized Gamma Hyperpriors</title><source>Free E- Journals</source><creator>Kim, Hwanwoo ; Sanz-Alonso, Daniel ; Strang, Alexander</creator><creatorcontrib>Kim, Hwanwoo ; Sanz-Alonso, Daniel ; Strang, Alexander</creatorcontrib><description>This paper introduces a computational framework to incorporate flexible regularization techniques in ensemble Kalman methods for nonlinear inverse problems. The proposed methodology approximates the maximum a posteriori (MAP) estimate of a hierarchical Bayesian model characterized by a conditionally Gaussian prior and generalized gamma hyperpriors. Suitable choices of hyperparameters yield sparsity-promoting regularization. We propose an iterative algorithm for MAP estimation, which alternates between updating the unknown with an ensemble Kalman method and updating the hyperparameters in the regularization to promote sparsity. The effectiveness of our methodology is demonstrated in several computed examples, including compressed sensing and subsurface flow inverse problems.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Inverse problems ; Iterative algorithms ; Iterative methods ; Regularization ; Sparsity</subject><ispartof>arXiv.org, 2022-05</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Kim, Hwanwoo</creatorcontrib><creatorcontrib>Sanz-Alonso, Daniel</creatorcontrib><creatorcontrib>Strang, Alexander</creatorcontrib><title>Hierarchical Ensemble Kalman Methods with Sparsity-Promoting Generalized Gamma Hyperpriors</title><title>arXiv.org</title><description>This paper introduces a computational framework to incorporate flexible regularization techniques in ensemble Kalman methods for nonlinear inverse problems. The proposed methodology approximates the maximum a posteriori (MAP) estimate of a hierarchical Bayesian model characterized by a conditionally Gaussian prior and generalized gamma hyperpriors. Suitable choices of hyperparameters yield sparsity-promoting regularization. We propose an iterative algorithm for MAP estimation, which alternates between updating the unknown with an ensemble Kalman method and updating the hyperparameters in the regularization to promote sparsity. The effectiveness of our methodology is demonstrated in several computed examples, including compressed sensing and subsurface flow inverse problems.</description><subject>Inverse problems</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Regularization</subject><subject>Sparsity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi80KgkAYAJcgSMp3WOgs2Nqq9zCFCII6dZFNv3Jlf-zblbCnr0MP0GkOMzMjAUuSTZRvGVuQ0Lk-jmOWZozzJCDXSgIKbDrZCEUL40DfFNCDUFoYegTf2dbRl_QdPQ8CnfRTdEKrrZfmQUsw31vJN7S0FFoLWk0D4IDSoluR-V0oB-GPS7LeF5ddFQ1onyM4X_d2RPNVNUvTLM4443nyX_UBb_5DTA</recordid><startdate>20220519</startdate><enddate>20220519</enddate><creator>Kim, Hwanwoo</creator><creator>Sanz-Alonso, Daniel</creator><creator>Strang, Alexander</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220519</creationdate><title>Hierarchical Ensemble Kalman Methods with Sparsity-Promoting Generalized Gamma Hyperpriors</title><author>Kim, Hwanwoo ; Sanz-Alonso, Daniel ; Strang, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26670752583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Inverse problems</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Regularization</topic><topic>Sparsity</topic><toplevel>online_resources</toplevel><creatorcontrib>Kim, Hwanwoo</creatorcontrib><creatorcontrib>Sanz-Alonso, Daniel</creatorcontrib><creatorcontrib>Strang, Alexander</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Hwanwoo</au><au>Sanz-Alonso, Daniel</au><au>Strang, Alexander</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Hierarchical Ensemble Kalman Methods with Sparsity-Promoting Generalized Gamma Hyperpriors</atitle><jtitle>arXiv.org</jtitle><date>2022-05-19</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>This paper introduces a computational framework to incorporate flexible regularization techniques in ensemble Kalman methods for nonlinear inverse problems. The proposed methodology approximates the maximum a posteriori (MAP) estimate of a hierarchical Bayesian model characterized by a conditionally Gaussian prior and generalized gamma hyperpriors. Suitable choices of hyperparameters yield sparsity-promoting regularization. We propose an iterative algorithm for MAP estimation, which alternates between updating the unknown with an ensemble Kalman method and updating the hyperparameters in the regularization to promote sparsity. The effectiveness of our methodology is demonstrated in several computed examples, including compressed sensing and subsurface flow inverse problems.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2667075258
source Free E- Journals
subjects Inverse problems
Iterative algorithms
Iterative methods
Regularization
Sparsity
title Hierarchical Ensemble Kalman Methods with Sparsity-Promoting Generalized Gamma Hyperpriors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A10%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Hierarchical%20Ensemble%20Kalman%20Methods%20with%20Sparsity-Promoting%20Generalized%20Gamma%20Hyperpriors&rft.jtitle=arXiv.org&rft.au=Kim,%20Hwanwoo&rft.date=2022-05-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2667075258%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2667075258&rft_id=info:pmid/&rfr_iscdi=true