Hierarchical Ensemble Kalman Methods with Sparsity-Promoting Generalized Gamma Hyperpriors

This paper introduces a computational framework to incorporate flexible regularization techniques in ensemble Kalman methods for nonlinear inverse problems. The proposed methodology approximates the maximum a posteriori (MAP) estimate of a hierarchical Bayesian model characterized by a conditionally...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-05
Hauptverfasser: Kim, Hwanwoo, Sanz-Alonso, Daniel, Strang, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces a computational framework to incorporate flexible regularization techniques in ensemble Kalman methods for nonlinear inverse problems. The proposed methodology approximates the maximum a posteriori (MAP) estimate of a hierarchical Bayesian model characterized by a conditionally Gaussian prior and generalized gamma hyperpriors. Suitable choices of hyperparameters yield sparsity-promoting regularization. We propose an iterative algorithm for MAP estimation, which alternates between updating the unknown with an ensemble Kalman method and updating the hyperparameters in the regularization to promote sparsity. The effectiveness of our methodology is demonstrated in several computed examples, including compressed sensing and subsurface flow inverse problems.
ISSN:2331-8422