A Simple Yet Effective SVD-GCN for Directed Graphs

In this paper, we propose a simple yet effective graph neural network for directed graphs (digraph) based on the classic Singular Value Decomposition (SVD), named SVD-GCN. The new graph neural network is built upon the graph SVD-framelet to better decompose graph signals on the SVD ``frequency'...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-05
Hauptverfasser: Zou, Chunya, Han, Andi, Lin, Lequan, Gao, Junbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a simple yet effective graph neural network for directed graphs (digraph) based on the classic Singular Value Decomposition (SVD), named SVD-GCN. The new graph neural network is built upon the graph SVD-framelet to better decompose graph signals on the SVD ``frequency'' bands. Further the new framelet SVD-GCN is also scaled up for larger scale graphs via using Chebyshev polynomial approximation. Through empirical experiments conducted on several node classification datasets, we have found that SVD-GCN has remarkable improvements in a variety of graph node learning tasks and it outperforms GCN and many other state-of-the-art graph neural networks for digraphs. Moreover, we empirically demonstate that the SVD-GCN has great denoising capability and robustness to high level graph data attacks. The theoretical and experimental results prove that the SVD-GCN is effective on a variant of graph datasets, meanwhile maintaining stable and even better performance than the state-of-the-arts.
ISSN:2331-8422