A Simple Yet Effective SVD-GCN for Directed Graphs
In this paper, we propose a simple yet effective graph neural network for directed graphs (digraph) based on the classic Singular Value Decomposition (SVD), named SVD-GCN. The new graph neural network is built upon the graph SVD-framelet to better decompose graph signals on the SVD ``frequency'...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-05 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose a simple yet effective graph neural network for directed graphs (digraph) based on the classic Singular Value Decomposition (SVD), named SVD-GCN. The new graph neural network is built upon the graph SVD-framelet to better decompose graph signals on the SVD ``frequency'' bands. Further the new framelet SVD-GCN is also scaled up for larger scale graphs via using Chebyshev polynomial approximation. Through empirical experiments conducted on several node classification datasets, we have found that SVD-GCN has remarkable improvements in a variety of graph node learning tasks and it outperforms GCN and many other state-of-the-art graph neural networks for digraphs. Moreover, we empirically demonstate that the SVD-GCN has great denoising capability and robustness to high level graph data attacks. The theoretical and experimental results prove that the SVD-GCN is effective on a variant of graph datasets, meanwhile maintaining stable and even better performance than the state-of-the-arts. |
---|---|
ISSN: | 2331-8422 |