Educational Data Mining for Student Performance Prediction: A Systematic Literature Review (2015-2021)
This systematic literature review aims to identify the recent research trend, most studied factors, and methods used to predict student academic performance from 2015 to 2021. The PRISMA framework guides the study. The study reviews 58 out of 219 research articles from Lens and Scopus databases. The...
Gespeichert in:
Veröffentlicht in: | International journal of emerging technologies in learning 2022-01, Vol.17 (5), p.147-179 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 179 |
---|---|
container_issue | 5 |
container_start_page | 147 |
container_title | International journal of emerging technologies in learning |
container_volume | 17 |
creator | Bin Roslan, Muhammad Haziq Chen, Chwen Jen |
description | This systematic literature review aims to identify the recent research trend, most studied factors, and methods used to predict student academic performance from 2015 to 2021. The PRISMA framework guides the study. The study reviews 58 out of 219 research articles from Lens and Scopus databases. The findings indicate that the research focus of current studies revolves around identifying factors influencing student performance, data mining (DM) algorithms performance, and DM related to e-Learning systems. It also reveals that student academic records and demographics are primary aspects that affect student performance. The most used DM approach is classification and the Decision Tree classifier is the most employed DM algorithm. |
doi_str_mv | 10.3991/ijet.v17i05.27685 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2666913434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2666913434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-519e10bb04ef16c395282cbe15b1984755dee220997f4adcb6e466e4853e51d43</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhC0EEqXwA7hZ4gKHBD9iJ-ZWlfKQiqgonC3H2SBXbVJsp6j_noRy4LDaXWlmpPkQuqQk5UrRW7eCmO5o7ohIWS4LcYRGtJA8Ibzgx__uU3QWwooQyRVXI1TPqs6a6NrGrPG9iQa_uMY1n7huPV7GroIm4gX4_t2YxgJeeKicHQx3eIKX-xBh0_stnrsI3sTOA36DnYNvfM0IFQkjjN6co5ParANc_O0x-niYvU-fkvnr4_N0Mk8sy3lMBFVASVmSDGoqLVeCFcyWQEVJVZHlQlQAjBGl8jozlS0lZLKfQnAQtMr4GF0dcre-_eogRL1qO993C5pJKRXlGR9U9KCyvg3BQ6233m2M32tK9IBTDzj1Aaf-xcl_AOgxaEY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2666913434</pqid></control><display><type>article</type><title>Educational Data Mining for Student Performance Prediction: A Systematic Literature Review (2015-2021)</title><source>EZB-FREE-00999 freely available EZB journals</source><source>EBSCOhost Education Source</source><creator>Bin Roslan, Muhammad Haziq ; Chen, Chwen Jen</creator><creatorcontrib>Bin Roslan, Muhammad Haziq ; Chen, Chwen Jen</creatorcontrib><description>This systematic literature review aims to identify the recent research trend, most studied factors, and methods used to predict student academic performance from 2015 to 2021. The PRISMA framework guides the study. The study reviews 58 out of 219 research articles from Lens and Scopus databases. The findings indicate that the research focus of current studies revolves around identifying factors influencing student performance, data mining (DM) algorithms performance, and DM related to e-Learning systems. It also reveals that student academic records and demographics are primary aspects that affect student performance. The most used DM approach is classification and the Decision Tree classifier is the most employed DM algorithm.</description><identifier>ISSN: 1863-0383</identifier><identifier>EISSN: 1863-0383</identifier><identifier>DOI: 10.3991/ijet.v17i05.27685</identifier><language>eng</language><publisher>Vienna: International Association of Online Engineering (IAOE)</publisher><subject>Data mining ; Literature reviews ; Systematic review</subject><ispartof>International journal of emerging technologies in learning, 2022-01, Vol.17 (5), p.147-179</ispartof><rights>2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-519e10bb04ef16c395282cbe15b1984755dee220997f4adcb6e466e4853e51d43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Bin Roslan, Muhammad Haziq</creatorcontrib><creatorcontrib>Chen, Chwen Jen</creatorcontrib><title>Educational Data Mining for Student Performance Prediction: A Systematic Literature Review (2015-2021)</title><title>International journal of emerging technologies in learning</title><description>This systematic literature review aims to identify the recent research trend, most studied factors, and methods used to predict student academic performance from 2015 to 2021. The PRISMA framework guides the study. The study reviews 58 out of 219 research articles from Lens and Scopus databases. The findings indicate that the research focus of current studies revolves around identifying factors influencing student performance, data mining (DM) algorithms performance, and DM related to e-Learning systems. It also reveals that student academic records and demographics are primary aspects that affect student performance. The most used DM approach is classification and the Decision Tree classifier is the most employed DM algorithm.</description><subject>Data mining</subject><subject>Literature reviews</subject><subject>Systematic review</subject><issn>1863-0383</issn><issn>1863-0383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkEtPwzAQhC0EEqXwA7hZ4gKHBD9iJ-ZWlfKQiqgonC3H2SBXbVJsp6j_noRy4LDaXWlmpPkQuqQk5UrRW7eCmO5o7ohIWS4LcYRGtJA8Ibzgx__uU3QWwooQyRVXI1TPqs6a6NrGrPG9iQa_uMY1n7huPV7GroIm4gX4_t2YxgJeeKicHQx3eIKX-xBh0_stnrsI3sTOA36DnYNvfM0IFQkjjN6co5ParANc_O0x-niYvU-fkvnr4_N0Mk8sy3lMBFVASVmSDGoqLVeCFcyWQEVJVZHlQlQAjBGl8jozlS0lZLKfQnAQtMr4GF0dcre-_eogRL1qO993C5pJKRXlGR9U9KCyvg3BQ6233m2M32tK9IBTDzj1Aaf-xcl_AOgxaEY</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Bin Roslan, Muhammad Haziq</creator><creator>Chen, Chwen Jen</creator><general>International Association of Online Engineering (IAOE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7XB</scope><scope>88B</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>M0P</scope><scope>PIMPY</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20220101</creationdate><title>Educational Data Mining for Student Performance Prediction: A Systematic Literature Review (2015-2021)</title><author>Bin Roslan, Muhammad Haziq ; Chen, Chwen Jen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-519e10bb04ef16c395282cbe15b1984755dee220997f4adcb6e466e4853e51d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Data mining</topic><topic>Literature reviews</topic><topic>Systematic review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bin Roslan, Muhammad Haziq</creatorcontrib><creatorcontrib>Chen, Chwen Jen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Education Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Education Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of emerging technologies in learning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bin Roslan, Muhammad Haziq</au><au>Chen, Chwen Jen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Educational Data Mining for Student Performance Prediction: A Systematic Literature Review (2015-2021)</atitle><jtitle>International journal of emerging technologies in learning</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>17</volume><issue>5</issue><spage>147</spage><epage>179</epage><pages>147-179</pages><issn>1863-0383</issn><eissn>1863-0383</eissn><abstract>This systematic literature review aims to identify the recent research trend, most studied factors, and methods used to predict student academic performance from 2015 to 2021. The PRISMA framework guides the study. The study reviews 58 out of 219 research articles from Lens and Scopus databases. The findings indicate that the research focus of current studies revolves around identifying factors influencing student performance, data mining (DM) algorithms performance, and DM related to e-Learning systems. It also reveals that student academic records and demographics are primary aspects that affect student performance. The most used DM approach is classification and the Decision Tree classifier is the most employed DM algorithm.</abstract><cop>Vienna</cop><pub>International Association of Online Engineering (IAOE)</pub><doi>10.3991/ijet.v17i05.27685</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1863-0383 |
ispartof | International journal of emerging technologies in learning, 2022-01, Vol.17 (5), p.147-179 |
issn | 1863-0383 1863-0383 |
language | eng |
recordid | cdi_proquest_journals_2666913434 |
source | EZB-FREE-00999 freely available EZB journals; EBSCOhost Education Source |
subjects | Data mining Literature reviews Systematic review |
title | Educational Data Mining for Student Performance Prediction: A Systematic Literature Review (2015-2021) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T09%3A59%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Educational%20Data%20Mining%20for%20Student%20Performance%20Prediction:%20A%20Systematic%20Literature%20Review%20(2015-2021)&rft.jtitle=International%20journal%20of%20emerging%20technologies%20in%20learning&rft.au=Bin%20Roslan,%20Muhammad%20Haziq&rft.date=2022-01-01&rft.volume=17&rft.issue=5&rft.spage=147&rft.epage=179&rft.pages=147-179&rft.issn=1863-0383&rft.eissn=1863-0383&rft_id=info:doi/10.3991/ijet.v17i05.27685&rft_dat=%3Cproquest_cross%3E2666913434%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2666913434&rft_id=info:pmid/&rfr_iscdi=true |