Educational Data Mining for Student Performance Prediction: A Systematic Literature Review (2015-2021)

This systematic literature review aims to identify the recent research trend, most studied factors, and methods used to predict student academic performance from 2015 to 2021. The PRISMA framework guides the study. The study reviews 58 out of 219 research articles from Lens and Scopus databases. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of emerging technologies in learning 2022-01, Vol.17 (5), p.147-179
Hauptverfasser: Bin Roslan, Muhammad Haziq, Chen, Chwen Jen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This systematic literature review aims to identify the recent research trend, most studied factors, and methods used to predict student academic performance from 2015 to 2021. The PRISMA framework guides the study. The study reviews 58 out of 219 research articles from Lens and Scopus databases. The findings indicate that the research focus of current studies revolves around identifying factors influencing student performance, data mining (DM) algorithms performance, and DM related to e-Learning systems. It also reveals that student academic records and demographics are primary aspects that affect student performance. The most used DM approach is classification and the Decision Tree classifier is the most employed DM algorithm.
ISSN:1863-0383
1863-0383
DOI:10.3991/ijet.v17i05.27685