Gorenstein projective objects in comma categories
Let A and B be abelian categories and F : A → B an additive and right exact functor which is perfect, and let ( F , B ) be the left comma category. We give an equivalent characterization of Gorenstein projective objects in ( F , B ) in terms of Gorenstein projective objects in B and A . We prove tha...
Gespeichert in:
Veröffentlicht in: | Periodica mathematica Hungarica 2022, Vol.84 (2), p.186-202 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
A
and
B
be abelian categories and
F
:
A
→
B
an additive and right exact functor which is perfect, and let
(
F
,
B
)
be the left comma category. We give an equivalent characterization of Gorenstein projective objects in
(
F
,
B
)
in terms of Gorenstein projective objects in
B
and
A
. We prove that there exists a left recollement of the stable category of the subcategory of
(
F
,
B
)
consisting of Gorenstein projective objects modulo projectives relative to the same kind of stable categories in
B
and
A
. Moreover, this left recollement can be filled into a recollement when
B
is Gorenstein and
F
preserves projectives. |
---|---|
ISSN: | 0031-5303 1588-2829 |
DOI: | 10.1007/s10998-021-00398-7 |