Gorenstein projective objects in comma categories

Let A and B be abelian categories and F : A → B an additive and right exact functor which is perfect, and let ( F , B ) be the left comma category. We give an equivalent characterization of Gorenstein projective objects in ( F , B ) in terms of Gorenstein projective objects in B and A . We prove tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Periodica mathematica Hungarica 2022, Vol.84 (2), p.186-202
Hauptverfasser: Peng, Yeyang, Zhu, Rongmin, Huang, Zhaoyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let A and B be abelian categories and F : A → B an additive and right exact functor which is perfect, and let ( F , B ) be the left comma category. We give an equivalent characterization of Gorenstein projective objects in ( F , B ) in terms of Gorenstein projective objects in B and A . We prove that there exists a left recollement of the stable category of the subcategory of ( F , B ) consisting of Gorenstein projective objects modulo projectives relative to the same kind of stable categories in B and A . Moreover, this left recollement can be filled into a recollement when B is Gorenstein and F preserves projectives.
ISSN:0031-5303
1588-2829
DOI:10.1007/s10998-021-00398-7